from argparse import ArgumentParser import numpy as np import requests from mmdet3d.apis import inference_detector, init_model def parse_args(): parser = ArgumentParser() parser.add_argument('pcd', help='Point cloud file') parser.add_argument('config', help='Config file') parser.add_argument('checkpoint', help='Checkpoint file') parser.add_argument('model_name', help='The model name in the server') parser.add_argument( '--inference-addr', default='127.0.0.1:8080', help='Address and port of the inference server') parser.add_argument( '--device', default='cuda:0', help='Device used for inference') parser.add_argument( '--score-thr', type=float, default=0.5, help='3d bbox score threshold') args = parser.parse_args() return args def parse_result(input): bbox = input[0]['3dbbox'] result = np.array(bbox) return result def main(args): # build the model from a config file and a checkpoint file model = init_model(args.config, args.checkpoint, device=args.device) # test a single point cloud file model_result, _ = inference_detector(model, args.pcd) # filter the 3d bboxes whose scores > 0.5 if 'pts_bbox' in model_result[0].keys(): pred_bboxes = model_result[0]['pts_bbox']['boxes_3d'].numpy() pred_scores = model_result[0]['pts_bbox']['scores_3d'].numpy() else: pred_bboxes = model_result[0]['boxes_3d'].numpy() pred_scores = model_result[0]['scores_3d'].numpy() model_result = pred_bboxes[pred_scores > 0.5] url = 'http://' + args.inference_addr + '/predictions/' + args.model_name with open(args.pcd, 'rb') as points: response = requests.post(url, points) server_result = parse_result(response.json()) assert np.allclose(model_result, server_result) if __name__ == '__main__': args = parse_args() main(args)