Spaces:
Running
Running
File size: 6,518 Bytes
8fc9e84 155926c dbed0a3 8fc9e84 929f24d 8fc9e84 929f24d 8fc9e84 929f24d 8fc9e84 7f5bd14 2c312a9 929f24d 2c312a9 929f24d 0f03e2f 47a9313 0f03e2f 929f24d 7f5bd14 929f24d 7f5bd14 929f24d 7f5bd14 f349c08 0f03e2f 929f24d f349c08 8fc9e84 ce549a4 8fc9e84 929f24d 8fc9e84 929f24d 8fc9e84 5a69f4d 21931b3 8fc9e84 5a69f4d 0a358e5 4a5c91c 5a13c15 5a69f4d 8fc9e84 929f24d 8fc9e84 5a69f4d 8fc9e84 5a69f4d 21931b3 8fc9e84 5a69f4d 8fc9e84 929f24d 8fc9e84 5a69f4d 8fc9e84 0a358e5 5a13c15 8fc9e84 9588578 8fc9e84 5a69f4d 155926c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 |
import gradio as gr
from markitdown import MarkItDown
import google.generativeai as genai
import tempfile
import os
from pathlib import Path
# Initialize MarkItDown
md = MarkItDown()
# Configure Gemini AI
genai.configure(api_key=os.getenv('GEMINI_KEY'))
model = genai.GenerativeModel('gemini-2.0-flash-lite-preview-02-05')
def process_with_markitdown(input_path):
"""Process file or URL with MarkItDown and return text content"""
print(f"[DEBUG] Starting MarkItDown processing for: {input_path}")
try:
import concurrent.futures
from concurrent.futures import ThreadPoolExecutor
def convert_with_timeout():
print("[DEBUG] Attempting MarkItDown conversion")
result = md.convert(input_path)
print("[DEBUG] MarkItDown conversion successful")
if not result or not hasattr(result, 'text_content'):
print("[DEBUG] No text content in result")
return "Error: No text content found in document"
return result.text_content
# Use ThreadPoolExecutor with timeout
with ThreadPoolExecutor() as executor:
future = executor.submit(convert_with_timeout)
try:
result = future.result(timeout=30) # 30 second timeout
print("[DEBUG] Successfully got result from MarkItDown")
return result
except concurrent.futures.TimeoutError:
print("[DEBUG] MarkItDown processing timed out")
return "Error: Processing timed out after 30 seconds"
except Exception as e:
print(f"[DEBUG] Error in process_with_markitdown: {str(e)}")
return f"Error processing input: {str(e)}"
def save_uploaded_file(uploaded_file):
"""Saves an uploaded file to a temporary location."""
print("[DEBUG] Starting save_uploaded_file")
if uploaded_file is None:
print("[DEBUG] No file uploaded")
return "No file uploaded."
try:
print(f"[DEBUG] Uploaded file object type: {type(uploaded_file)}")
print(f"[DEBUG] Uploaded file name: {uploaded_file.name}")
# Get the actual file path from the uploaded file
file_path = uploaded_file.name
print(f"[DEBUG] Original file path: {file_path}")
# Read the content directly from the original file
try:
with open(file_path, 'rb') as source_file:
content = source_file.read()
print(f"[DEBUG] Successfully read {len(content)} bytes from source file")
except Exception as e:
print(f"[DEBUG] Error reading source file: {str(e)}")
return f"Error reading file: {str(e)}"
# Save to temp file
temp_dir = tempfile.gettempdir()
temp_filename = os.path.join(temp_dir, os.path.basename(file_path))
with open(temp_filename, 'wb') as f:
f.write(content)
print(f"[DEBUG] File saved successfully at: {temp_filename}")
return temp_filename
except Exception as e:
print(f"[DEBUG] Error in save_uploaded_file: {str(e)}")
return f"An error occurred: {str(e)}"
async def summarize_text(text):
"""Summarize the input text using Gemini AI"""
try:
prompt = f"""Please provide a concise summary of the following text. Focus on the main points and key takeaways:
{text}
Summary:"""
# Use the synchronous version since async version isn't working as expected
response = model.generate_content(prompt)
return response.text
except Exception as e:
return f"Error generating summary: {str(e)}"
async def process_input(input_text, uploaded_file=None):
"""Main function to process either URL or uploaded file"""
print("[DEBUG] Starting process_input")
try:
if uploaded_file is not None:
# Handle file upload
temp_path = save_uploaded_file(uploaded_file)
if temp_path.startswith('Error'):
return temp_path
text = process_with_markitdown(temp_path)
# Clean up temporary file
try:
os.remove(temp_path)
except:
pass
elif input_text.startswith(('http://', 'https://')):
# Handle URL
text = process_with_markitdown(input_text)
else:
# Handle direct text input
text = input_text
if text.startswith('Error'):
return text
# Generate summary using Gemini AI
summary = await summarize_text(text)
return summary
except Exception as e:
return f"Error processing input: {str(e)}"
def clear_inputs():
return ["", None, ""]
# Create Gradio interface with drag-and-drop
with gr.Blocks(theme=gr.themes.Soft()) as iface:
gr.Markdown(
"""
# Summarizeit
> Summarize any document! Using Gemini 2.0 Flash model.
Enter a URL, paste text, or drag & drop a file to get a summary.
"""
)
with gr.Row():
input_text = gr.Textbox(
label="Enter URL or text",
placeholder="Enter a URL or paste text here...",
scale=2
)
with gr.Row():
file_upload = gr.File(
label="Drop files here or click to upload",
file_types=[
".pdf", ".docx", ".xlsx", ".csv", ".txt",
".html", ".htm", ".xml", ".json"
],
file_count="single",
scale=2
)
with gr.Row():
submit_btn = gr.Button("Summarize", variant="primary")
clear_btn = gr.Button("Clear")
output_text = gr.Textbox(
label="Summary",
lines=10,
show_copy_button=True
)
# Set up event handlers
submit_btn.click(
fn=process_input,
inputs=[input_text, file_upload],
outputs=output_text,
api_name="process"
)
clear_btn.click(
fn=clear_inputs,
outputs=[input_text, file_upload, output_text]
)
# Add examples
gr.Examples(
examples=[
["https://h3manth.com"],
["https://www.youtube.com/watch?v=bSHp7WVpPgc"],
["https://en.wikipedia.org/wiki/Three-body_problem"]
],
inputs=input_text
)
if __name__ == "__main__":
iface.launch(True) |