Spaces:
Sleeping
Sleeping
import torch.nn as nn | |
import torch.nn.functional as F | |
import torch | |
class RNN(nn.Module): | |
def __init__(self, input_size, hidden_size, output_size): | |
super(RNN, self).__init__() | |
self.hidden_size = hidden_size | |
self.i2h = nn.Linear(input_size, hidden_size) | |
self.h2h = nn.Linear(hidden_size, hidden_size) | |
self.h2o = nn.Linear(hidden_size, output_size) | |
self.softmax = nn.LogSoftmax(dim=1) | |
def forward(self, input, hidden): | |
hidden = F.tanh(self.i2h(input) + self.h2h(hidden)) | |
output = self.h2o(hidden) | |
output = self.softmax(output) | |
return output, hidden | |
def initHidden(self): | |
return torch.zeros(1, self.hidden_size) | |