Spaces:
Runtime error
Runtime error
File size: 6,664 Bytes
3d58577 3eeacb0 3d58577 3eeacb0 3d58577 44de141 3d58577 17c872a 3d58577 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
import gradio as gr
import time
import logging
import torch
from sys import platform
from transformers import pipeline, AutoModelForSpeechSeq2Seq, AutoProcessor
from transformers.utils import is_flash_attn_2_available
from languages import get_language_names
from subtitle_manager import Subtitle
logging.basicConfig(level=logging.INFO)
last_model = None
pipe = None
def write_file(output_file,subtitle):
with open(output_file, 'w', encoding='utf-8') as f:
f.write(subtitle)
def create_pipe(model, flash):
if torch.cuda.is_available():
device = "cuda:0"
elif platform == "darwin":
device = "mps"
else:
device = "cpu"
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
model_id = model
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id,
torch_dtype=torch_dtype,
low_cpu_mem_usage=True,
use_safetensors=True,
attn_implementation="flash_attention_2" if flash and is_flash_attn_2_available() else "sdpa",
# eager (manual attention implementation)
# flash_attention_2 (implementation using flash attention 2)
# sdpa (implementation using torch.nn.functional.scaled_dot_product_attention)
# PyTorch SDPA requirements in Transformers are not met. Please install torch>=2.1.1.
)
model.to(device)
processor = AutoProcessor.from_pretrained(model_id)
pipe = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
# max_new_tokens=128,
# chunk_length_s=15,
# batch_size=16,
torch_dtype=torch_dtype,
device=device,
)
return pipe
def transcribe_webui_simple_progress(modelName, languageName, urlData, multipleFiles, microphoneData, task, flash,
chunk_length_s, batch_size, progress=gr.Progress()):
global last_model
global pipe
progress(0, desc="Loading Audio..")
logging.info(f"urlData:{urlData}")
logging.info(f"multipleFiles:{multipleFiles}")
logging.info(f"microphoneData:{microphoneData}")
logging.info(f"task: {task}")
logging.info(f"is_flash_attn_2_available: {is_flash_attn_2_available()}")
logging.info(f"chunk_length_s: {chunk_length_s}")
logging.info(f"batch_size: {batch_size}")
if last_model == None:
logging.info("first model")
progress(0.1, desc="Loading Model..")
pipe = create_pipe(modelName, flash)
elif modelName != last_model:
logging.info("new model")
torch.cuda.empty_cache()
progress(0.1, desc="Loading Model..")
pipe = create_pipe(modelName, flash)
else:
logging.info("Model not changed")
last_model = modelName
srt_sub = Subtitle("srt")
vtt_sub = Subtitle("vtt")
txt_sub = Subtitle("txt")
files = []
if multipleFiles:
files+=multipleFiles
if urlData:
files.append(urlData)
if microphoneData:
files.append(microphoneData)
logging.info(files)
generate_kwargs = {}
if languageName != "Automatic Detection" and modelName.endswith(".en") == False:
generate_kwargs["language"] = languageName
if modelName.endswith(".en") == False:
generate_kwargs["task"] = task
files_out = []
for file in progress.tqdm(files, desc="Working..."):
start_time = time.time()
logging.info(file)
outputs = pipe(
file,
chunk_length_s=chunk_length_s,#30
batch_size=batch_size,#24
generate_kwargs=generate_kwargs,
return_timestamps=True,
)
logging.debug(outputs)
logging.info(print(f"transcribe: {time.time() - start_time} sec."))
file_out = file.split('/')[-1]
srt = srt_sub.get_subtitle(outputs["chunks"])
vtt = vtt_sub.get_subtitle(outputs["chunks"])
txt = txt_sub.get_subtitle(outputs["chunks"])
write_file(file_out+".srt",srt)
write_file(file_out+".vtt",vtt)
write_file(file_out+".txt",txt)
files_out += [file_out+".srt", file_out+".vtt", file_out+".txt"]
progress(1, desc="Completed!")
return files_out, vtt, txt
with gr.Blocks(title="Insanely Fast Whisper") as demo:
description = "An opinionated CLI to transcribe Audio files w/ Whisper on-device! Powered by 🤗 Transformers, Optimum & flash-attn"
article = "Read the [documentation here](https://github.com/Vaibhavs10/insanely-fast-whisper#cli-options)."
whisper_models = [
"openai/whisper-tiny", "openai/whisper-tiny.en",
"openai/whisper-base", "openai/whisper-base.en",
"openai/whisper-small", "openai/whisper-small.en", "distil-whisper/distil-small.en",
"openai/whisper-medium", "openai/whisper-medium.en", "distil-whisper/distil-medium.en",
"openai/whisper-large",
"openai/whisper-large-v1",
"openai/whisper-large-v2", "distil-whisper/distil-large-v2",
"openai/whisper-large-v3", "distil-whisper/distil-large-v3", "xaviviro/whisper-large-v3-catalan-finetuned-v2",
]
waveform_options=gr.WaveformOptions(
waveform_color="#01C6FF",
waveform_progress_color="#0066B4",
skip_length=2,
show_controls=False,
)
simple_transcribe = gr.Interface(fn=transcribe_webui_simple_progress,
description=description,
article=article,
inputs=[
gr.Dropdown(choices=whisper_models, value="distil-whisper/distil-large-v2", label="Model", info="Select whisper model", interactive = True,),
gr.Dropdown(choices=["Automatic Detection"] + sorted(get_language_names()), value="Automatic Detection", label="Language", info="Select audio voice language", interactive = True,),
gr.Text(label="URL", info="(YouTube, etc.)", interactive = True),
gr.File(label="Upload Files", file_count="multiple"),
gr.Audio(sources=["upload", "microphone",], type="filepath", label="Input", waveform_options = waveform_options),
gr.Dropdown(choices=["transcribe", "translate"], label="Task", value="transcribe", interactive = True),
gr.Checkbox(label='Flash',info='Use Flash Attention 2'),
gr.Number(label='chunk_length_s',value=30, interactive = True),
gr.Number(label='batch_size',value=24, interactive = True)
], outputs=[
gr.File(label="Download"),
gr.Text(label="Transcription"),
gr.Text(label="Segments")
]
)
if __name__ == "__main__":
demo.launch()
|