File size: 3,596 Bytes
268b9c8
6dba677
 
 
268b9c8
 
 
dad54e8
 
268b9c8
 
 
 
 
6dba677
268b9c8
 
7ab5c6f
268b9c8
 
 
 
 
6dba677
dad54e8
 
5a48be8
888c495
dad54e8
 
 
 
 
268b9c8
888c495
b286fa8
 
 
888c495
 
 
 
 
 
 
 
268b9c8
 
 
dad54e8
108f368
268b9c8
dad54e8
247c2f7
 
268b9c8
108f368
268b9c8
247c2f7
268b9c8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import torch
import gradio as gr
from transformers import AutoTokenizer, AutoModelForMaskedLM, AutoModelForSeq2SeqLM, AutoModelForCausalLM

BERTTokenizer = AutoTokenizer.from_pretrained("cl-tohoku/bert-base-japanese")
BERTModel = AutoModelForMaskedLM.from_pretrained("cl-tohoku/bert-base-japanese")

mBERTTokenizer = AutoTokenizer.from_pretrained("bert-base-multilingual-cased")
mBERTModel = AutoModelForMaskedLM.from_pretrained("bert-base-multilingual-cased")

GPT2Tokenizer = AutoTokenizer.from_pretrained("rinna/japanese-gpt2-medium")
GPT2Model = AutoModelForCausalLM.from_pretrained("rinna/japanese-gpt2-medium")

votes=[]
def MELCHIOR(sue):#BERT
    allow=BERTTokenizer("承認").input_ids[1]
    deny=BERTTokenizer("否定").input_ids[1]
    output=BERTModel(**BERTTokenizer('MELCHIORは科学者としての人格を持っています。人間とMELCHIORの対話です。人間「'+sue+'。承認 か 否定 のどちらかで答えてください。」'+"MELCHIOR 「[MASK]」",return_tensors="pt")).logits
    BERTTokenizer.batch_decode(torch.argmax(output,-1))
    mask=output[0,-3,:]
    votes.append(1 if mask[allow]>mask[deny] else -1)
    return "承認"  if mask[allow]>mask[deny] else "否定"

def BALTHASAR(sue):#mT5
    allow=mBERTTokenizer("Yes").input_ids[1]
    deny=mBERTTokenizer("No").input_ids[1]
    output=mBERTModel(**mBERTTokenizer('BALTHASARは母としての人格を持っています。人間とBALTHASARの対話です。人間「'+sue+'。YesかNoか。」'+"BALTHASAR 「[MASK]」",return_tensors="pt")).logits
    print(mBERTTokenizer.batch_decode(torch.argmax(output,-1)))
    mask=output[0,-3,:]
    print(mBERTTokenizer.decode(torch.argmax(output[0,-3,:])))
    votes.append(1 if mask[allow]>mask[deny] else -1)
    return "承認"  if mask[allow]>mask[deny] else "否定"


def CASPER(sue):#GPT2
    allow=GPT2Tokenizer("承認").input_ids[1]
    deny=GPT2Tokenizer("否定").input_ids[1]
    inpt=GPT2Tokenizer('女としての人格を持ったAI・カスパーと人間の対話です。人間「'+sue+'。これに承認か否定か。」'+"カスパー「私は,",return_tensors="pt")
    probs=GPT2Model(input_ids=inpt.input_ids[:,:-1],attention_mask=inpt.attention_mask[:,:-1]).logits[0]
    i=-1
    p_answer=probs
    id=torch.argmax(probs[i])
    votes.append(1 if probs[i][allow]>probs[i][deny] else -1)
    return "承認" if probs[i][allow]>probs[i][deny] else "否定"


def greet(sue):
    text1="BERT-1"+MELCHIOR(sue)
    text2="GPT-2"+CASPER(sue)
    text3="mBERT-3"+BALTHASAR(sue)
    return text1+" "+text2+" "+text3+"\n___\n\n"+("|可決|" if sum(votes[-3:])>0 else "| 否決 |")+"\n___"


css="@import url('https://fonts.googleapis.com/css2?family=Shippori+Mincho:wght@800&display=swap');  .gradio-container {background-color: black} .gr-button {background-color: blue;color:black; weight:200%;font-family:'Shippori Mincho', serif;}"
css+=".block{color:orange;} ::placeholder {font-size:35%} .gr-box {text-align: center;font-size: 125%;border-color:orange;background-color: #000000;weight:200%;font-family:'Shippori Mincho', serif;}:disabled {color: orange;opacity:1.0;}"
with gr.Blocks(css=css) as demo:
    sue = gr.Textbox(label="NAGI System",placeholder="決議を入力(多数決)")
    greet_btn = gr.Button("提訴")
    output = gr.Textbox(label="決議",placeholder="本システムは事前学習モデルのpromptにより行われています.決議結果に対して当サービス開発者は一切の責任を負いません.")
    greet_btn.click(fn=greet, inputs=sue, outputs=output)
demo.launch()