Spaces:
Running
on
Zero
Running
on
Zero
# Copyright © Alibaba, Inc. and its affiliates. | |
# The implementation here is modifed based on diffusers.StableDiffusionPipeline, | |
# originally Apache 2.0 License and public available at | |
# https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/stable_diffusion/pipeline_stable_diffusion.py | |
import re | |
from typing import Any, Callable, Dict, List, Optional, Union | |
import torch | |
from diffusers import (AutoencoderKL, DiffusionPipeline, | |
StableDiffusionPipeline) | |
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin | |
try: | |
from diffusers.models.autoencoders.vae import DecoderOutput | |
except: | |
from diffusers.models.vae import DecoderOutput | |
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
from diffusers.utils import logging, replace_example_docstring | |
from transformers import CLIPTokenizer | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers import EulerAncestralDiscreteScheduler | |
>>> from txt2panoimage.pipeline_base import StableDiffusionBlendExtendPipeline | |
>>> model_id = "models/sd-base" | |
>>> pipe = StableDiffusionBlendExtendPipeline.from_pretrained(model_id, torch_dtype=torch.float16) | |
>>> pipe = pipe.to("cuda") | |
>>> pipe.vae.enable_tiling() | |
>>> pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
>>> # remove following line if xformers is not installed | |
>>> pipe.enable_xformers_memory_efficient_attention() | |
>>> pipe.enable_model_cpu_offload() | |
>>> prompt = "a living room" | |
>>> image = pipe(prompt).images[0] | |
``` | |
""" | |
re_attention = re.compile( | |
r""" | |
\\\(| | |
\\\)| | |
\\\[| | |
\\]| | |
\\\\| | |
\\| | |
\(| | |
\[| | |
:([+-]?[.\d]+)\)| | |
\)| | |
]| | |
[^\\()\[\]:]+| | |
: | |
""", | |
re.X, | |
) | |
def parse_prompt_attention(text): | |
""" | |
Parses a string with attention tokens and returns a list of pairs: text and its associated weight. | |
Accepted tokens are: | |
(abc) - increases attention to abc by a multiplier of 1.1 | |
(abc:3.12) - increases attention to abc by a multiplier of 3.12 | |
[abc] - decreases attention to abc by a multiplier of 1.1 | |
""" | |
res = [] | |
round_brackets = [] | |
square_brackets = [] | |
round_bracket_multiplier = 1.1 | |
square_bracket_multiplier = 1 / 1.1 | |
def multiply_range(start_position, multiplier): | |
for p in range(start_position, len(res)): | |
res[p][1] *= multiplier | |
for m in re_attention.finditer(text): | |
text = m.group(0) | |
weight = m.group(1) | |
if text.startswith('\\'): | |
res.append([text[1:], 1.0]) | |
elif text == '(': | |
round_brackets.append(len(res)) | |
elif text == '[': | |
square_brackets.append(len(res)) | |
elif weight is not None and len(round_brackets) > 0: | |
multiply_range(round_brackets.pop(), float(weight)) | |
elif text == ')' and len(round_brackets) > 0: | |
multiply_range(round_brackets.pop(), round_bracket_multiplier) | |
elif text == ']' and len(square_brackets) > 0: | |
multiply_range(square_brackets.pop(), square_bracket_multiplier) | |
else: | |
res.append([text, 1.0]) | |
for pos in round_brackets: | |
multiply_range(pos, round_bracket_multiplier) | |
for pos in square_brackets: | |
multiply_range(pos, square_bracket_multiplier) | |
if len(res) == 0: | |
res = [['', 1.0]] | |
# merge runs of identical weights | |
i = 0 | |
while i + 1 < len(res): | |
if res[i][1] == res[i + 1][1]: | |
res[i][0] += res[i + 1][0] | |
res.pop(i + 1) | |
else: | |
i += 1 | |
return res | |
def get_prompts_with_weights(pipe: DiffusionPipeline, prompt: List[str], | |
max_length: int): | |
r""" | |
Tokenize a list of prompts and return its tokens with weights of each token. | |
No padding, starting or ending token is included. | |
""" | |
tokens = [] | |
weights = [] | |
truncated = False | |
for text in prompt: | |
texts_and_weights = parse_prompt_attention(text) | |
text_token = [] | |
text_weight = [] | |
for word, weight in texts_and_weights: | |
# tokenize and discard the starting and the ending token | |
token = pipe.tokenizer(word).input_ids[1:-1] | |
text_token += token | |
# copy the weight by length of token | |
text_weight += [weight] * len(token) | |
# stop if the text is too long (longer than truncation limit) | |
if len(text_token) > max_length: | |
truncated = True | |
break | |
# truncate | |
if len(text_token) > max_length: | |
truncated = True | |
text_token = text_token[:max_length] | |
text_weight = text_weight[:max_length] | |
tokens.append(text_token) | |
weights.append(text_weight) | |
if truncated: | |
logger.warning( | |
'Prompt was truncated. Try to shorten the prompt or increase max_embeddings_multiples' | |
) | |
return tokens, weights | |
def pad_tokens_and_weights(tokens, | |
weights, | |
max_length, | |
bos, | |
eos, | |
pad, | |
no_boseos_middle=True, | |
chunk_length=77): | |
r""" | |
Pad the tokens (with starting and ending tokens) and weights (with 1.0) to max_length. | |
""" | |
max_embeddings_multiples = (max_length - 2) // (chunk_length - 2) | |
weights_length = max_length if no_boseos_middle else max_embeddings_multiples * chunk_length | |
for i in range(len(tokens)): | |
tokens[i] = [ | |
bos | |
] + tokens[i] + [pad] * (max_length - 1 - len(tokens[i]) - 1) + [eos] | |
if no_boseos_middle: | |
weights[i] = [1.0] + weights[i] + [1.0] * ( | |
max_length - 1 - len(weights[i])) | |
else: | |
w = [] | |
if len(weights[i]) == 0: | |
w = [1.0] * weights_length | |
else: | |
for j in range(max_embeddings_multiples): | |
w.append(1.0) # weight for starting token in this chunk | |
w += weights[i][j * (chunk_length - 2):min( | |
len(weights[i]), (j + 1) * (chunk_length - 2))] | |
w.append(1.0) # weight for ending token in this chunk | |
w += [1.0] * (weights_length - len(w)) | |
weights[i] = w[:] | |
return tokens, weights | |
def get_unweighted_text_embeddings( | |
pipe: DiffusionPipeline, | |
text_input: torch.Tensor, | |
chunk_length: int, | |
no_boseos_middle: Optional[bool] = True, | |
): | |
""" | |
When the length of tokens is a multiple of the capacity of the text encoder, | |
it should be split into chunks and sent to the text encoder individually. | |
""" | |
max_embeddings_multiples = (text_input.shape[1] - 2) // (chunk_length - 2) | |
if max_embeddings_multiples > 1: | |
text_embeddings = [] | |
for i in range(max_embeddings_multiples): | |
# extract the i-th chunk | |
text_input_chunk = text_input[:, i * (chunk_length - 2):(i + 1) | |
* (chunk_length - 2) + 2].clone() | |
# cover the head and the tail by the starting and the ending tokens | |
text_input_chunk[:, 0] = text_input[0, 0] | |
text_input_chunk[:, -1] = text_input[0, -1] | |
text_embedding = pipe.text_encoder(text_input_chunk)[0] | |
if no_boseos_middle: | |
if i == 0: | |
# discard the ending token | |
text_embedding = text_embedding[:, :-1] | |
elif i == max_embeddings_multiples - 1: | |
# discard the starting token | |
text_embedding = text_embedding[:, 1:] | |
else: | |
# discard both starting and ending tokens | |
text_embedding = text_embedding[:, 1:-1] | |
text_embeddings.append(text_embedding) | |
text_embeddings = torch.concat(text_embeddings, axis=1) | |
else: | |
text_embeddings = pipe.text_encoder(text_input)[0] | |
return text_embeddings | |
def get_weighted_text_embeddings( | |
pipe: DiffusionPipeline, | |
prompt: Union[str, List[str]], | |
uncond_prompt: Optional[Union[str, List[str]]] = None, | |
max_embeddings_multiples: Optional[int] = 3, | |
no_boseos_middle: Optional[bool] = False, | |
skip_parsing: Optional[bool] = False, | |
skip_weighting: Optional[bool] = False, | |
): | |
r""" | |
Prompts can be assigned with local weights using brackets. For example, | |
prompt 'A (very beautiful) masterpiece' highlights the words 'very beautiful', | |
and the embedding tokens corresponding to the words get multiplied by a constant, 1.1. | |
Also, to regularize of the embedding, the weighted embedding would be scaled to preserve the original mean. | |
Args: | |
pipe (`DiffusionPipeline`): | |
Pipe to provide access to the tokenizer and the text encoder. | |
prompt (`str` or `List[str]`): | |
The prompt or prompts to guide the image generation. | |
uncond_prompt (`str` or `List[str]`): | |
The unconditional prompt or prompts for guide the image generation. If unconditional prompt | |
is provided, the embeddings of prompt and uncond_prompt are concatenated. | |
max_embeddings_multiples (`int`, *optional*, defaults to `3`): | |
The max multiple length of prompt embeddings compared to the max output length of text encoder. | |
no_boseos_middle (`bool`, *optional*, defaults to `False`): | |
If the length of text token is multiples of the capacity of text encoder, whether reserve the starting and | |
ending token in each of the chunk in the middle. | |
skip_parsing (`bool`, *optional*, defaults to `False`): | |
Skip the parsing of brackets. | |
skip_weighting (`bool`, *optional*, defaults to `False`): | |
Skip the weighting. When the parsing is skipped, it is forced True. | |
""" | |
max_length = (pipe.tokenizer.model_max_length | |
- 2) * max_embeddings_multiples + 2 | |
if isinstance(prompt, str): | |
prompt = [prompt] | |
if not skip_parsing: | |
prompt_tokens, prompt_weights = get_prompts_with_weights( | |
pipe, prompt, max_length - 2) | |
if uncond_prompt is not None: | |
if isinstance(uncond_prompt, str): | |
uncond_prompt = [uncond_prompt] | |
uncond_tokens, uncond_weights = get_prompts_with_weights( | |
pipe, uncond_prompt, max_length - 2) | |
else: | |
prompt_tokens = [ | |
token[1:-1] for token in pipe.tokenizer( | |
prompt, max_length=max_length, truncation=True).input_ids | |
] | |
prompt_weights = [[1.0] * len(token) for token in prompt_tokens] | |
if uncond_prompt is not None: | |
if isinstance(uncond_prompt, str): | |
uncond_prompt = [uncond_prompt] | |
uncond_tokens = [ | |
token[1:-1] for token in pipe.tokenizer( | |
uncond_prompt, max_length=max_length, | |
truncation=True).input_ids | |
] | |
uncond_weights = [[1.0] * len(token) for token in uncond_tokens] | |
# round up the longest length of tokens to a multiple of (model_max_length - 2) | |
max_length = max([len(token) for token in prompt_tokens]) | |
if uncond_prompt is not None: | |
max_length = max(max_length, | |
max([len(token) for token in uncond_tokens])) | |
max_embeddings_multiples = min( | |
max_embeddings_multiples, | |
(max_length - 1) // (pipe.tokenizer.model_max_length - 2) + 1, | |
) | |
max_embeddings_multiples = max(1, max_embeddings_multiples) | |
max_length = (pipe.tokenizer.model_max_length | |
- 2) * max_embeddings_multiples + 2 | |
# pad the length of tokens and weights | |
bos = pipe.tokenizer.bos_token_id | |
eos = pipe.tokenizer.eos_token_id | |
pad = getattr(pipe.tokenizer, 'pad_token_id', eos) | |
prompt_tokens, prompt_weights = pad_tokens_and_weights( | |
prompt_tokens, | |
prompt_weights, | |
max_length, | |
bos, | |
eos, | |
pad, | |
no_boseos_middle=no_boseos_middle, | |
chunk_length=pipe.tokenizer.model_max_length, | |
) | |
prompt_tokens = torch.tensor( | |
prompt_tokens, dtype=torch.long, device=pipe.device) | |
if uncond_prompt is not None: | |
uncond_tokens, uncond_weights = pad_tokens_and_weights( | |
uncond_tokens, | |
uncond_weights, | |
max_length, | |
bos, | |
eos, | |
pad, | |
no_boseos_middle=no_boseos_middle, | |
chunk_length=pipe.tokenizer.model_max_length, | |
) | |
uncond_tokens = torch.tensor( | |
uncond_tokens, dtype=torch.long, device=pipe.device) | |
# get the embeddings | |
text_embeddings = get_unweighted_text_embeddings( | |
pipe, | |
prompt_tokens, | |
pipe.tokenizer.model_max_length, | |
no_boseos_middle=no_boseos_middle, | |
) | |
prompt_weights = torch.tensor( | |
prompt_weights, | |
dtype=text_embeddings.dtype, | |
device=text_embeddings.device) | |
if uncond_prompt is not None: | |
uncond_embeddings = get_unweighted_text_embeddings( | |
pipe, | |
uncond_tokens, | |
pipe.tokenizer.model_max_length, | |
no_boseos_middle=no_boseos_middle, | |
) | |
uncond_weights = torch.tensor( | |
uncond_weights, | |
dtype=uncond_embeddings.dtype, | |
device=uncond_embeddings.device) | |
# assign weights to the prompts and normalize in the sense of mean | |
# TODO: should we normalize by chunk or in a whole (current implementation)? | |
if (not skip_parsing) and (not skip_weighting): | |
previous_mean = text_embeddings.float().mean(axis=[-2, -1]).to( | |
text_embeddings.dtype) | |
text_embeddings *= prompt_weights.unsqueeze(-1) | |
current_mean = text_embeddings.float().mean(axis=[-2, -1]).to( | |
text_embeddings.dtype) | |
text_embeddings *= (previous_mean | |
/ current_mean).unsqueeze(-1).unsqueeze(-1) | |
if uncond_prompt is not None: | |
previous_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to( | |
uncond_embeddings.dtype) | |
uncond_embeddings *= uncond_weights.unsqueeze(-1) | |
current_mean = uncond_embeddings.float().mean(axis=[-2, -1]).to( | |
uncond_embeddings.dtype) | |
uncond_embeddings *= (previous_mean | |
/ current_mean).unsqueeze(-1).unsqueeze(-1) | |
if uncond_prompt is not None: | |
return text_embeddings, uncond_embeddings | |
return text_embeddings, None | |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
""" | |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | |
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | |
""" | |
std_text = noise_pred_text.std( | |
dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
# rescale the results from guidance (fixes overexposure) | |
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
noise_cfg = guidance_rescale * noise_pred_rescaled + ( | |
1 - guidance_rescale) * noise_cfg | |
return noise_cfg | |
class StableDiffusionBlendExtendPipeline(StableDiffusionPipeline): | |
r""" | |
Pipeline for text-to-image generation using Stable Diffusion. | |
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
In addition the pipeline inherits the following loading methods: | |
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`] | |
- *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`] | |
- *Ckpt*: [`loaders.FromCkptMixin.from_ckpt`] | |
as well as the following saving methods: | |
- *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`] | |
Args: | |
vae ([`AutoencoderKL`]): | |
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
text_encoder ([`CLIPTextModel`]): | |
Frozen text-encoder. Stable Diffusion uses the text portion of | |
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
tokenizer (`CLIPTokenizer`): | |
Tokenizer of class | |
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/ | |
en/model_doc/clip#transformers.CLIPTokenizer). | |
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
scheduler ([`SchedulerMixin`]): | |
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
safety_checker ([`StableDiffusionSafetyChecker`]): | |
Classification module that estimates whether generated images could be considered offensive or harmful. | |
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. | |
feature_extractor ([`CLIPImageProcessor`]): | |
Model that extracts features from generated images to be used as inputs for the `safety_checker`. | |
""" | |
_optional_components = ['safety_checker', 'feature_extractor'] | |
def _encode_prompt( | |
self, | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt=None, | |
max_embeddings_multiples=3, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
lora_scale: Optional[float] = None, | |
): | |
r""" | |
Encodes the prompt into text encoder hidden states. | |
Args: | |
prompt (`str` or `list(int)`): | |
prompt to be encoded | |
device: (`torch.device`): | |
torch device | |
num_images_per_prompt (`int`): | |
number of images that should be generated per prompt | |
do_classifier_free_guidance (`bool`): | |
whether to use classifier free guidance or not | |
negative_prompt (`str` or `List[str]`): | |
The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
if `guidance_scale` is less than `1`). | |
max_embeddings_multiples (`int`, *optional*, defaults to `3`): | |
The max multiple length of prompt embeddings compared to the max output length of text encoder. | |
""" | |
if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
self._lora_scale = lora_scale | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
if negative_prompt_embeds is None: | |
if negative_prompt is None: | |
negative_prompt = [''] * batch_size | |
elif isinstance(negative_prompt, str): | |
negative_prompt = [negative_prompt] * batch_size | |
if batch_size != len(negative_prompt): | |
raise ValueError( | |
f'`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:' | |
f' {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches' | |
' the batch size of `prompt`.') | |
if prompt_embeds is None or negative_prompt_embeds is None: | |
if isinstance(self, TextualInversionLoaderMixin): | |
prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
if do_classifier_free_guidance and negative_prompt_embeds is None: | |
negative_prompt = self.maybe_convert_prompt( | |
negative_prompt, self.tokenizer) | |
prompt_embeds1, negative_prompt_embeds1 = get_weighted_text_embeddings( | |
pipe=self, | |
prompt=prompt, | |
uncond_prompt=negative_prompt | |
if do_classifier_free_guidance else None, | |
max_embeddings_multiples=max_embeddings_multiples, | |
) | |
if prompt_embeds is None: | |
prompt_embeds = prompt_embeds1 | |
if negative_prompt_embeds is None: | |
negative_prompt_embeds = negative_prompt_embeds1 | |
bs_embed, seq_len, _ = prompt_embeds.shape | |
# duplicate text embeddings for each generation per prompt, using mps friendly method | |
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, | |
seq_len, -1) | |
if do_classifier_free_guidance: | |
bs_embed, seq_len, _ = negative_prompt_embeds.shape | |
negative_prompt_embeds = negative_prompt_embeds.repeat( | |
1, num_images_per_prompt, 1) | |
negative_prompt_embeds = negative_prompt_embeds.view( | |
bs_embed * num_images_per_prompt, seq_len, -1) | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
return prompt_embeds | |
def blend_v(self, a, b, blend_extent): | |
blend_extent = min(a.shape[2], b.shape[2], blend_extent) | |
for y in range(blend_extent): | |
b[:, :, | |
y, :] = a[:, :, -blend_extent | |
+ y, :] * (1 - y / blend_extent) + b[:, :, y, :] * ( | |
y / blend_extent) | |
return b | |
def blend_h(self, a, b, blend_extent): | |
blend_extent = min(a.shape[3], b.shape[3], blend_extent) | |
for x in range(blend_extent): | |
b[:, :, :, x] = a[:, :, :, -blend_extent | |
+ x] * (1 - x / blend_extent) + b[:, :, :, x] * ( | |
x / blend_extent) | |
return b | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
guidance_scale: float = 7.5, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, | |
List[torch.Generator]]] = None, | |
latents: Optional[torch.FloatTensor] = None, | |
prompt_embeds: Optional[torch.FloatTensor] = None, | |
negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
output_type: Optional[str] = 'pil', | |
return_dict: bool = True, | |
callback: Optional[Callable[[int, int, torch.FloatTensor], | |
None]] = None, | |
callback_steps: int = 1, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
guidance_rescale: float = 0.0, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
guidance_scale (`float`, *optional*, defaults to 7.5): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.FloatTensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
plain tuple. | |
callback (`Callable`, *optional*): | |
A function that will be called every `callback_steps` steps during inference. The function will be | |
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
callback_steps (`int`, *optional*, defaults to 1): | |
The frequency at which the `callback` function will be called. If not specified, the callback will be | |
called at every step. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.cross_attention](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/cross_attention.py). | |
guidance_rescale (`float`, *optional*, defaults to 0.7): | |
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are | |
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of | |
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). | |
Guidance rescale factor should fix overexposure when using zero terminal SNR. | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
When returning a tuple, the first element is a list with the generated images, and the second element is a | |
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
(nsfw) content, according to the `safety_checker`. | |
""" | |
def tiled_decode( | |
self, | |
z: torch.FloatTensor, | |
return_dict: bool = True | |
) -> Union[DecoderOutput, torch.FloatTensor]: | |
r"""Decode a batch of images using a tiled decoder. | |
Args: | |
When this option is enabled, the VAE will split the input tensor into tiles to compute decoding in several | |
steps. This is useful to keep memory use constant regardless of image size. | |
The end result of tiled decoding is: different from non-tiled decoding due to each tile using a different | |
decoder. To avoid tiling artifacts, the tiles overlap and are blended together to form a smooth output. | |
You may still see tile-sized changes in the look of the output, but they should be much less noticeable. | |
z (`torch.FloatTensor`): Input batch of latent vectors. return_dict (`bool`, *optional*, defaults to | |
`True`): | |
Whether or not to return a [`DecoderOutput`] instead of a plain tuple. | |
""" | |
_tile_overlap_factor = 1 - self.tile_overlap_factor | |
overlap_size = int(self.tile_latent_min_size | |
* _tile_overlap_factor) | |
blend_extent = int(self.tile_sample_min_size | |
* self.tile_overlap_factor) | |
row_limit = self.tile_sample_min_size - blend_extent | |
w = z.shape[3] | |
z = torch.cat([z, z[:, :, :, :w // 4]], dim=-1) | |
# Split z into overlapping 64x64 tiles and decode them separately. | |
# The tiles have an overlap to avoid seams between tiles. | |
rows = [] | |
for i in range(0, z.shape[2], overlap_size): | |
row = [] | |
tile = z[:, :, i:i + self.tile_latent_min_size, :] | |
tile = self.post_quant_conv(tile) | |
decoded = self.decoder(tile) | |
vae_scale_factor = decoded.shape[-1] // tile.shape[-1] | |
row.append(decoded) | |
rows.append(row) | |
result_rows = [] | |
for i, row in enumerate(rows): | |
result_row = [] | |
for j, tile in enumerate(row): | |
# blend the above tile and the left tile | |
# to the current tile and add the current tile to the result row | |
if i > 0: | |
tile = self.blend_v(rows[i - 1][j], tile, blend_extent) | |
if j > 0: | |
tile = self.blend_h(row[j - 1], tile, blend_extent) | |
result_row.append( | |
self.blend_h( | |
tile[:, :, :row_limit, w * vae_scale_factor:], | |
tile[:, :, :row_limit, :w * vae_scale_factor], | |
tile.shape[-1] - w * vae_scale_factor)) | |
result_rows.append(torch.cat(result_row, dim=3)) | |
dec = torch.cat(result_rows, dim=2) | |
if not return_dict: | |
return (dec, ) | |
return DecoderOutput(sample=dec) | |
self.vae.tiled_decode = tiled_decode.__get__(self.vae, AutoencoderKL) | |
# 0. Default height and width to unet | |
height = height or self.unet.config.sample_size * self.vae_scale_factor | |
width = width or self.unet.config.sample_size * self.vae_scale_factor | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs(prompt, height, width, callback_steps, | |
negative_prompt, prompt_embeds, | |
negative_prompt_embeds) | |
self.blend_extend = width // self.vae_scale_factor // 32 | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
# corresponds to doing no classifier free guidance. | |
do_classifier_free_guidance = guidance_scale > 1.0 | |
# 3. Encode input prompt | |
text_encoder_lora_scale = ( | |
cross_attention_kwargs.get('scale', None) | |
if cross_attention_kwargs is not None else None) | |
prompt_embeds = self._encode_prompt( | |
prompt, | |
device, | |
num_images_per_prompt, | |
do_classifier_free_guidance, | |
negative_prompt, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
lora_scale=text_encoder_lora_scale, | |
) | |
# 4. Prepare timesteps | |
self.scheduler.set_timesteps(num_inference_steps, device=device) | |
timesteps = self.scheduler.timesteps | |
# 5. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 7. Denoising loop | |
num_warmup_steps = len( | |
timesteps) - num_inference_steps * self.scheduler.order | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat( | |
[latents] * 2) if do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input( | |
latent_model_input, t) | |
# predict the noise residual | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + guidance_scale * ( | |
noise_pred_text - noise_pred_uncond) | |
if do_classifier_free_guidance and guidance_rescale > 0.0: | |
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
noise_pred = rescale_noise_cfg( | |
noise_pred, | |
noise_pred_text, | |
guidance_rescale=guidance_rescale) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents = self.scheduler.step( | |
noise_pred, | |
t, | |
latents, | |
**extra_step_kwargs, | |
return_dict=False)[0] | |
# call the callback, if provided | |
condition_i = i == len(timesteps) - 1 | |
condition_warm = (i + 1) > num_warmup_steps and ( | |
i + 1) % self.scheduler.order == 0 | |
if condition_i or condition_warm: | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
callback(i, t, latents) | |
latents = self.blend_h(latents, latents, self.blend_extend) | |
latents = self.blend_h(latents, latents, self.blend_extend) | |
latents = latents[:, :, :, :width // self.vae_scale_factor] | |
if not output_type == 'latent': | |
image = self.vae.decode( | |
latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
image, has_nsfw_concept = self.run_safety_checker( | |
image, device, prompt_embeds.dtype) | |
else: | |
image = latents | |
has_nsfw_concept = None | |
if has_nsfw_concept is None: | |
do_denormalize = [True] * image.shape[0] | |
else: | |
do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
image = self.image_processor.postprocess( | |
image, output_type=output_type, do_denormalize=do_denormalize) | |
# Offload last model to CPU | |
if hasattr( | |
self, | |
'final_offload_hook') and self.final_offload_hook is not None: | |
self.final_offload_hook.offload() | |
if not return_dict: | |
return (image, has_nsfw_concept) | |
return StableDiffusionPipelineOutput( | |
images=image, nsfw_content_detected=has_nsfw_concept) | |