File size: 2,038 Bytes
0022789
 
 
 
 
9148f31
39ffbcb
0022789
b2cd494
 
 
 
 
 
 
ff46a0e
e771e55
9148f31
b2cd494
 
 
 
0022789
 
 
ff46a0e
 
82192ca
0022789
 
ff46a0e
82192ca
0022789
ff46a0e
0022789
 
67994b3
f1841f9
 
 
 
 
 
 
0022789
 
f1841f9
 
 
0022789
 
ff46a0e
0022789
 
 
 
 
 
 
 
 
 
c5349e7
 
 
 
 
 
 
 
92f8a2c
c5349e7
 
 
0022789
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import gradio as gr
from gradio_imageslider import ImageSlider
from PIL import Image
import numpy as np
from aura_sr import AuraSR
import torch
import spaces

# Force CPU usage
torch.set_default_tensor_type(torch.FloatTensor)

# Override torch.load to always use CPU
original_load = torch.load
torch.load = lambda *args, **kwargs: original_load(*args, **kwargs, map_location=torch.device('cpu'))

# Initialize the AuraSR model
aura_sr = AuraSR.from_pretrained("fal-ai/AuraSR")

# Restore original torch.load
torch.load = original_load

@spaces.GPU
def process_image(input_image):
    if input_image is None:
        return None

    # Convert to PIL Image for resizing
    pil_image = Image.fromarray(input_image)

    # Upscale the image using AuraSR
    with torch.no_grad():
        upscaled_image = aura_sr.upscale_4x(pil_image)

    # Convert result to numpy array if it's not already
    result_array = np.array(upscaled_image)

    return [input_image, result_array]
    
title = """<h1 align="center">AuraSR - An open reproduction of the GigaGAN Upscaler from fal.ai</h1>
<p><center>
<a href="https://blog.fal.ai/introducing-aurasr-an-open-reproduction-of-the-gigagan-upscaler-2/" target="_blank">[Blog Post]</a>
<a href="https://huggingface.co/fal-ai/AuraSR" target="_blank">[Model Page]</a>
</center></p>
"""

with gr.Blocks() as demo:
    
    gr.HTML(title)
    
    with gr.Row():
        with gr.Column(scale=1):
            input_image = gr.Image(label="Input Image", type="numpy")
            process_btn = gr.Button("Upscale Image")
        with gr.Column(scale=1):
            output_slider = ImageSlider(label="Before / After", type="numpy")

    process_btn.click(
        fn=process_image,
        inputs=[input_image],
        outputs=output_slider
    )

    # Add examples
    gr.Examples(
        examples=[
            "image1.png",
            "image3.png"
        ],
        inputs=input_image,
        outputs=output_slider,
        fn=process_image,
        cache_examples=True
    )

demo.launch(debug=True)