Spaces:
Running
on
Zero
Running
on
Zero
gokaygokay
commited on
Commit
•
47b9af6
1
Parent(s):
8a7a560
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,8 @@
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
import torch
|
4 |
-
from PIL import Image
|
5 |
-
from transformers import AutoProcessor, AutoModelForCausalLM, pipeline
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
import random
|
8 |
-
|
9 |
-
import os
|
10 |
-
import subprocess
|
11 |
-
|
12 |
-
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
|
13 |
|
14 |
# Initialize models
|
15 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
@@ -17,74 +10,36 @@ dtype = torch.bfloat16
|
|
17 |
|
18 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
19 |
|
20 |
-
#
|
21 |
-
|
22 |
-
|
23 |
-
# Initialize Florence model
|
24 |
-
florence_model = AutoModelForCausalLM.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True).to(device).eval()
|
25 |
-
florence_processor = AutoProcessor.from_pretrained('microsoft/Florence-2-base', trust_remote_code=True)
|
26 |
|
27 |
-
#
|
28 |
-
|
29 |
-
|
30 |
-
MAX_SEED = np.iinfo(np.int32).max
|
31 |
-
MAX_IMAGE_SIZE = 2048
|
32 |
-
|
33 |
-
# Florence caption function
|
34 |
-
def florence_caption(image):
|
35 |
-
if not isinstance(image, Image.Image):
|
36 |
-
image = Image.fromarray(image)
|
37 |
-
|
38 |
-
inputs = florence_processor(text="<MORE_DETAILED_CAPTION>", images=image, return_tensors="pt").to(device)
|
39 |
-
generated_ids = florence_model.generate(
|
40 |
-
input_ids=inputs["input_ids"],
|
41 |
-
pixel_values=inputs["pixel_values"],
|
42 |
-
max_new_tokens=1024,
|
43 |
-
early_stopping=False,
|
44 |
-
do_sample=False,
|
45 |
-
num_beams=3,
|
46 |
-
)
|
47 |
-
generated_text = florence_processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
48 |
-
parsed_answer = florence_processor.post_process_generation(
|
49 |
-
generated_text,
|
50 |
-
task="<MORE_DETAILED_CAPTION>",
|
51 |
-
image_size=(image.width, image.height)
|
52 |
-
)
|
53 |
-
return parsed_answer["<MORE_DETAILED_CAPTION>"]
|
54 |
|
55 |
-
|
56 |
-
def enhance_prompt(input_prompt):
|
57 |
-
result = enhancer_long("Enhance the description: " + input_prompt)
|
58 |
-
enhanced_text = result[0]['summary_text']
|
59 |
-
return enhanced_text
|
60 |
|
61 |
@spaces.GPU(duration=75)
|
62 |
-
def
|
63 |
-
|
64 |
-
if not isinstance(image, Image.Image):
|
65 |
-
image = Image.fromarray(image)
|
66 |
-
prompt = florence_caption(image)
|
67 |
-
else:
|
68 |
-
prompt = text_prompt
|
69 |
-
|
70 |
-
if use_enhancer:
|
71 |
-
prompt = enhance_prompt(prompt)
|
72 |
-
|
73 |
-
if randomize_seed:
|
74 |
-
seed = random.randint(0, MAX_SEED)
|
75 |
-
|
76 |
-
generator = torch.Generator(device=device).manual_seed(seed)
|
77 |
|
78 |
image = pipe(
|
79 |
prompt=prompt,
|
80 |
-
|
81 |
-
|
82 |
width=width,
|
83 |
height=height,
|
84 |
-
|
|
|
85 |
).images[0]
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
|
|
|
88 |
|
89 |
custom_css = """
|
90 |
.input-group, .output-group {
|
@@ -103,47 +58,39 @@ custom_css = """
|
|
103 |
}
|
104 |
"""
|
105 |
|
106 |
-
title = """<h1 align="center">FLUX
|
107 |
-
<p><center>
|
108 |
-
<a href="https://huggingface.co/black-forest-labs/FLUX.1-schnell" target="_blank">[FLUX.1-schnell Model]</a>
|
109 |
-
<a href="https://huggingface.co/microsoft/Florence-2-base" target="_blank">[Florence-2 Model]</a>
|
110 |
-
<a href="https://huggingface.co/gokaygokay/Lamini-Prompt-Enchance-Long" target="_blank">[Prompt Enhancer Long]</a>
|
111 |
-
<p align="center">Create long prompts from images or enhance your short prompts with prompt enhancer</p>
|
112 |
-
</center></p>
|
113 |
"""
|
114 |
|
115 |
-
with gr.Blocks(
|
116 |
gr.HTML(title)
|
117 |
|
118 |
with gr.Row():
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
with gr.Accordion("Advanced Settings", open=False):
|
124 |
-
text_prompt = gr.Textbox(label="Text Prompt (optional, used if no image is uploaded)")
|
125 |
-
use_enhancer = gr.Checkbox(label="Use Prompt Enhancer", value=False)
|
126 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
127 |
-
randomize_seed = gr.Checkbox(label="Randomize Seed", value=True)
|
128 |
-
width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
129 |
-
height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=1024)
|
130 |
-
num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=50, step=1, value=4)
|
131 |
-
|
132 |
-
generate_btn = gr.Button("Generate Image", elem_classes="submit-btn")
|
133 |
-
|
134 |
-
with gr.Column(scale=1):
|
135 |
-
with gr.Group(elem_classes="output-group"):
|
136 |
-
output_image = gr.Image(label="Result", elem_id="gallery", show_label=False)
|
137 |
-
final_prompt = gr.Textbox(label="Final Prompt Used")
|
138 |
-
used_seed = gr.Number(label="Seed Used")
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
148 |
|
149 |
-
|
|
|
1 |
import spaces
|
2 |
import gradio as gr
|
3 |
import torch
|
|
|
|
|
|
|
4 |
import random
|
5 |
+
from diffusers import DiffusionPipeline
|
|
|
|
|
|
|
|
|
6 |
|
7 |
# Initialize models
|
8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
10 |
|
11 |
huggingface_token = os.getenv("HUGGINGFACE_TOKEN")
|
12 |
|
13 |
+
# Initialize the base model and move it to GPU
|
14 |
+
base_model = "black-forest-labs/FLUX.1-dev"
|
15 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16, token=huggingface_token).to("cuda")
|
|
|
|
|
|
|
16 |
|
17 |
+
# Load LoRA weights
|
18 |
+
pipe.load_lora_weights("gokaygokay/Flux-Detailer-LoRA")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
MAX_SEED = 2**32-1
|
|
|
|
|
|
|
|
|
21 |
|
22 |
@spaces.GPU(duration=75)
|
23 |
+
def generate_image(prompt, steps, seed, cfg_scale, width, height, lora_scale):
|
24 |
+
generator = torch.Generator(device="cuda").manual_seed(seed)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
|
26 |
image = pipe(
|
27 |
prompt=prompt,
|
28 |
+
num_inference_steps=steps,
|
29 |
+
guidance_scale=cfg_scale,
|
30 |
width=width,
|
31 |
height=height,
|
32 |
+
generator=generator,
|
33 |
+
joint_attention_kwargs={"scale": lora_scale},
|
34 |
).images[0]
|
35 |
+
return image
|
36 |
+
|
37 |
+
def run_lora(prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale):
|
38 |
+
if randomize_seed:
|
39 |
+
seed = random.randint(0, MAX_SEED)
|
40 |
|
41 |
+
image = generate_image(prompt, steps, seed, cfg_scale, width, height, lora_scale)
|
42 |
+
return image, seed
|
43 |
|
44 |
custom_css = """
|
45 |
.input-group, .output-group {
|
|
|
58 |
}
|
59 |
"""
|
60 |
|
61 |
+
title = """<h1 align="center">FLUX Creativity LoRA</h1>
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
"""
|
63 |
|
64 |
+
with gr.Blocks(theme=gr.themes.Soft(primary_hue="blue", secondary_hue="gray"), css=custom_css) as app:
|
65 |
gr.HTML(title)
|
66 |
|
67 |
with gr.Row():
|
68 |
+
prompt = gr.Textbox(label="Prompt", lines=3, placeholder="Type your prompt here")
|
69 |
+
|
70 |
+
with gr.Row():
|
71 |
+
generate_button = gr.Button("Generate", variant="primary")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
|
73 |
+
with gr.Row():
|
74 |
+
result = gr.Image(label="Generated Image")
|
75 |
+
|
76 |
+
with gr.Accordion("Advanced Settings", open=False):
|
77 |
+
with gr.Row():
|
78 |
+
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
|
79 |
+
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
|
80 |
+
|
81 |
+
with gr.Row():
|
82 |
+
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
83 |
+
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
84 |
+
|
85 |
+
with gr.Row():
|
86 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
87 |
+
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0)
|
88 |
+
lora_scale = gr.Slider(label="LoRA Scale", minimum=0, maximum=1, step=0.01, value=0.95)
|
89 |
+
|
90 |
+
inputs = [prompt, cfg_scale, steps, randomize_seed, seed, width, height, lora_scale]
|
91 |
+
outputs = [result, seed]
|
92 |
+
|
93 |
+
generate_button.click(fn=run_lora, inputs=inputs, outputs=outputs)
|
94 |
+
prompt.submit(fn=run_lora, inputs=inputs, outputs=outputs)
|
95 |
|
96 |
+
app.launch(debug=True)
|