|
import gradio as gr |
|
from transformers import AutoProcessor, AutoModelForCausalLM |
|
import spaces |
|
import re |
|
from PIL import Image |
|
|
|
import subprocess |
|
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True) |
|
|
|
model = AutoModelForCausalLM.from_pretrained('gokaygokay/Florence-2-SD3-Captioner', trust_remote_code=True).to("cuda").eval() |
|
|
|
processor = AutoProcessor.from_pretrained('gokaygokay/Florence-2-SD3-Captioner', trust_remote_code=True) |
|
|
|
|
|
TITLE = "# [Florence-2 SD3 Long Captioner](https://huggingface.co/gokaygokay/Florence-2-SD3-Captioner/)" |
|
DESCRIPTION = "[Florence-2 Base](https://huggingface.co/microsoft/Florence-2-base-ft) fine-tuned on Long SD3 Prompt and Image pairs. Check above link for datasets that are used for fine-tuning." |
|
|
|
def modify_caption(caption: str) -> str: |
|
""" |
|
Removes specific prefixes from captions if present, otherwise returns the original caption. |
|
Args: |
|
caption (str): A string containing a caption. |
|
Returns: |
|
str: The caption with the prefix removed if it was present, or the original caption. |
|
""" |
|
|
|
prefix_substrings = [ |
|
('captured from ', ''), |
|
('captured at ', '') |
|
] |
|
|
|
|
|
pattern = '|'.join([re.escape(opening) for opening, _ in prefix_substrings]) |
|
replacers = {opening.lower(): replacer for opening, replacer in prefix_substrings} |
|
|
|
|
|
def replace_fn(match): |
|
return replacers[match.group(0).lower()] |
|
|
|
|
|
modified_caption = re.sub(pattern, replace_fn, caption, count=1, flags=re.IGNORECASE) |
|
|
|
|
|
return modified_caption if modified_caption != caption else caption |
|
|
|
@spaces.GPU |
|
def run_example(image): |
|
image = Image.fromarray(image) |
|
task_prompt = "<DESCRIPTION>" |
|
prompt = task_prompt + "Describe this image in great detail." |
|
|
|
|
|
if image.mode != "RGB": |
|
image = image.convert("RGB") |
|
|
|
inputs = processor(text=prompt, images=image, return_tensors="pt").to("cuda") |
|
generated_ids = model.generate( |
|
input_ids=inputs["input_ids"], |
|
pixel_values=inputs["pixel_values"], |
|
max_new_tokens=1024, |
|
num_beams=3 |
|
) |
|
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0] |
|
parsed_answer = processor.post_process_generation(generated_text, task=task_prompt, image_size=(image.width, image.height)) |
|
return modify_caption(parsed_answer["<DESCRIPTION>"]) |
|
|
|
|
|
css = """ |
|
#output { |
|
height: 500px; |
|
overflow: auto; |
|
border: 1px solid #ccc; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
gr.Markdown(TITLE) |
|
gr.Markdown(DESCRIPTION) |
|
with gr.Tab(label="Florence-2 SD3 Prompts"): |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_img = gr.Image(label="Input Picture") |
|
submit_btn = gr.Button(value="Submit") |
|
with gr.Column(): |
|
output_text = gr.Textbox(label="Output Text") |
|
|
|
gr.Examples( |
|
[["image1.jpg"], ["image2.jpg"], ["image3.png"], ["image4.jpg"], ["image5.jpg"], ["image6.PNG"]], |
|
inputs = [input_img], |
|
outputs = [output_text], |
|
fn=run_example, |
|
label='Try captioning on below examples' |
|
) |
|
|
|
submit_btn.click(run_example, [input_img], [output_text]) |
|
|
|
demo.launch(debug=True) |