import gradio as gr from PIL import Image from transparent_background import Remover import numpy as np # Initialize the model globally remover = Remover() def process_image(input_image, torchscript_jit, output_type): global remover if torchscript_jit == "on" and not isinstance(remover, Remover(jit=True).__class__): remover = Remover(jit=True) elif torchscript_jit == "default" and not isinstance(remover, Remover().__class__): remover = Remover() if output_type == "Mask only": # Process the image and get only the mask output = remover.process(input_image, type='map') if isinstance(output, Image.Image): # If output is already a PIL Image, convert to grayscale mask = output.convert('L') else: # If output is a numpy array, convert to PIL Image mask = Image.fromarray((output * 255).astype(np.uint8), mode='L') return mask else: # Process the image and return the RGBA result output = remover.process(input_image, type='rgba') return output iface = gr.Interface( fn=process_image, inputs=[ gr.Image(type="pil", label="Input Image"), gr.Radio(["default", "on"], label="TorchScript JIT", value="default"), gr.Radio(["Default", "Mask only"], label="Output Type", value="Default") ], outputs=gr.Image(type="pil", label="Output Image"), title="Inspyrenet Background Remover", description="Remove the background from an image using Inspyrenet. Choose 'Mask only' for a black and white mask, or 'Default' for the image with transparent background.", theme='bethecloud/storj_theme', ) if __name__ == "__main__": iface.launch()