import gradio as gr
from stitching import Stitcher
import cv2
import numpy as np
def stitch_images(image_mode, image1, image2, images, detector, matcher, estimator, blender_type, crop, wave_correct):
if image_mode == "Two Images":
if image1 is None or image2 is None:
return None
cv_images = [cv2.cvtColor(np.array(img), cv2.COLOR_RGB2BGR) for img in [image1, image2]]
else: # Multiple Images
if not images or len(images) < 2:
return None
cv_images = []
for img_path in images:
img = cv2.imread(img_path.name)
if img is None:
return None
cv_images.append(img)
try:
stitcher = Stitcher(
detector=detector,
matcher_type=matcher,
estimator=estimator,
blender_type=blender_type,
crop=crop,
wave_correct_kind=wave_correct
)
panorama = stitcher.stitch(cv_images)
# Convert back to RGB for display
panorama_rgb = cv2.cvtColor(panorama, cv2.COLOR_BGR2RGB)
return panorama_rgb
except Exception as e:
return None
def update_image_input(choice):
if choice == "Two Images":
return gr.update(visible=True), gr.update(visible=True), gr.update(visible=False)
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=True)
title = """
Stitching
"Upload images to create a panorama. Adjust parameters for better results."
"""
with gr.Blocks(theme='bethecloud/storj_theme') as iface:
gr.HTML(title)
with gr.Row():
image_mode = gr.Radio(["Two Images", "Multiple Images"], label="Image Upload Mode", value="Two Images")
with gr.Row():
image1 = gr.Image(label="Image 1", height=300)
image2 = gr.Image(label="Image 2", height=300)
images = gr.File(file_count="multiple", label="Upload multiple images", visible=False)
image_mode.change(update_image_input, image_mode, [image1, image2, images])
with gr.Row():
detector = gr.Dropdown(["orb", "sift", "surf", "akaze"], label="Feature Detector", value="orb")
matcher = gr.Dropdown(["homography", "affine"], label="Matcher Type", value="homography")
estimator = gr.Dropdown(["homography", "affine"], label="Estimator", value="homography")
with gr.Row():
blender_type = gr.Dropdown(["multiband", "feather", "no"], label="Blender Type", value="multiband")
crop = gr.Checkbox(label="Crop Result", value=True)
wave_correct = gr.Radio(["horiz", "vert", "no"], label="Wave Correction", value="horiz")
stitch_button = gr.Button("Stitch Images")
output_image = gr.Image(type="numpy", label="Stitched Panorama")
stitch_button.click(
stitch_images,
inputs=[image_mode, image1, image2, images, detector, matcher, estimator, blender_type, crop, wave_correct],
outputs=output_image
)
gr.Examples(
examples=[
["Two Images", "exposure_error_1.jpg", "exposure_error_2.jpg", None, "orb", "homography", "homography", "multiband", True, "horiz"],
["Multiple Images", None, None, ["weir_1.jpg", "weir_2.jpg", "weir_3.jpg"], "orb", "homography", "homography", "multiband", True, "horiz"]
],
inputs=[image_mode, image1, image2, images, detector, matcher, estimator, blender_type, crop, wave_correct],
outputs=output_image,
fn=stitch_images,
cache_examples=True,
)
iface.launch()