File size: 9,503 Bytes
1ebef6f
4da2d90
 
 
 
69d6988
4da2d90
 
 
 
 
baaa2b9
f8ce661
4da2d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ebef6f
 
 
 
 
 
 
4da2d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9fdbb17
 
4da2d90
69d6988
4da2d90
 
 
 
 
 
 
69d6988
 
4da2d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
baaa2b9
4da2d90
 
 
 
049cb5a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4da2d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
049cb5a
 
 
 
4da2d90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5df2e96
9fdbb17
 
 
 
 
4da2d90
 
 
 
 
 
5df2e96
4da2d90
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
import spaces
import os
import requests
import torch
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from diffusers.models import AutoencoderKL
from PIL import Image
from RealESRGAN import RealESRGAN
import cv2
import numpy as np
from diffusers.models.attention_processor import AttnProcessor2_0
import gradio as gr

# Constants
SD15_WEIGHTS = "weights"
CONTROLNET_CACHE = "controlnet-cache"
SCHEDULERS = {
    "DDIM": DDIMScheduler,
    "DPMSolverMultistep": DPMSolverMultistepScheduler,
    "K_EULER_ANCESTRAL": EulerAncestralDiscreteScheduler,
    "K_EULER": EulerDiscreteScheduler,
}

# Function to download files
def download_file(url, folder_path, filename):
    if not os.path.exists(folder_path):
        os.makedirs(folder_path)
    file_path = os.path.join(folder_path, filename)

    if os.path.isfile(file_path):
        print(f"File already exists: {file_path}")
    else:
        response = requests.get(url, stream=True)
        if response.status_code == 200:
            with open(file_path, 'wb') as file:
                for chunk in response.iter_content(chunk_size=1024):
                    file.write(chunk)
            print(f"File successfully downloaded and saved: {file_path}")
        else:
            print(f"Error downloading the file. Status code: {response.status_code}")

# Download necessary models and files

@spaces.GPU
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
    prompt = "masterpiece, best quality, highres"
    negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
    result = process_image(input_image, prompt, negative_prompt, resolution, num_inference_steps, guidance_scale, strength, hdr)
    return result
    
# MODEL
download_file(
    "https://huggingface.co/dantea1118/juggernaut_reborn/resolve/main/juggernaut_reborn.safetensors?download=true",
    "models/models/Stable-diffusion",
    "juggernaut_reborn.safetensors"
)

# UPSCALER

download_file(
    "https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x2.pth?download=true",
    "models/upscalers/",
    "RealESRGAN_x2.pth"
)

download_file(
    "https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x4.pth?download=true",
    "models/upscalers/",
    "RealESRGAN_x4.pth"
)

# NEGATIVE
download_file(
    "https://huggingface.co/philz1337x/embeddings/resolve/main/verybadimagenegative_v1.3.pt?download=true",
    "models/embeddings",
    "verybadimagenegative_v1.3.pt"
)
download_file(
    "https://huggingface.co/datasets/AddictiveFuture/sd-negative-embeddings/resolve/main/JuggernautNegative-neg.pt?download=true",
    "models/embeddings",
    "JuggernautNegative-neg.pt"
)

# LORA

download_file(
    "https://huggingface.co/philz1337x/loras/resolve/main/SDXLrender_v2.0.safetensors?download=true",
    "models/Lora",
    "SDXLrender_v2.0.safetensors"
)
download_file(
    "https://huggingface.co/philz1337x/loras/resolve/main/more_details.safetensors?download=true",
    "models/Lora",
    "more_details.safetensors"
)

# CONTROLNET

download_file(
    "https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11f1e_sd15_tile.pth?download=true",
    "models/ControlNet",
    "control_v11f1e_sd15_tile.pth"
)

# VAE

download_file(
    "https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.safetensors?download=true",
    "models/VAE",
    "vae-ft-mse-840000-ema-pruned.safetensors"
)

# Set up the device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

# Load ControlNet model
controlnet = ControlNetModel.from_single_file(
    "models/ControlNet/control_v11f1e_sd15_tile.pth", torch_dtype=torch.float16
)
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")

# Load the Stable Diffusion pipeline with Juggernaut Reborn model
model_path = "models/models/Stable-diffusion/juggernaut_reborn.safetensors"
pipe = StableDiffusionControlNetImg2ImgPipeline.from_single_file(
    model_path,
    controlnet=controlnet,
    torch_dtype=torch.float16,
    use_safetensors=True,
    safety_checker=safety_checker
)

# Load and set VAE
vae = AutoencoderKL.from_single_file(
    "models/VAE/vae-ft-mse-840000-ema-pruned.safetensors",
    torch_dtype=torch.float16
)
pipe.vae = vae

# Load embeddings and LoRA models
pipe.load_textual_inversion("models/embeddings/verybadimagenegative_v1.3.pt")
pipe.load_textual_inversion("models/embeddings/JuggernautNegative-neg.pt")
pipe.load_lora_weights("models/Lora/SDXLrender_v2.0.safetensors")
pipe.fuse_lora(lora_scale=0.5)
pipe.load_lora_weights("models/Lora/more_details.safetensors")
# Set up the scheduler
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)

# Move the pipeline to the device and enable memory efficient attention
pipe = pipe.to(device)
pipe.unet.set_attn_processor(AttnProcessor2_0())

# Enable FreeU
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)

class LazyRealESRGAN:
    def __init__(self, device, scale):
        self.device = device
        self.scale = scale
        self.model = None

    def load_model(self):
        if self.model is None:
            self.model = RealESRGAN(self.device, scale=self.scale)
            self.model.load_weights(f'models/upscalers/RealESRGAN_x{self.scale}.pth', download=False)

    def predict(self, img):
        self.load_model()
        return self.model.predict(img)

# Initialize the lazy models
lazy_realesrgan_x2 = LazyRealESRGAN(device, scale=2)
lazy_realesrgan_x4 = LazyRealESRGAN(device, scale=4)

def resize_and_upscale(input_image, resolution):
    scale = 2
    if resolution == 2048:
        init_w = 1024
    elif resolution == 2560:
        init_w = 1280
    elif resolution == 3072:
        init_w = 1536
    else:
        init_w = 1024
        scale = 4

    input_image = input_image.convert("RGB")
    W, H = input_image.size
    k = float(init_w) / min(H, W)
    H *= k
    W *= k
    H = int(round(H / 64.0)) * 64
    W = int(round(W / 64.0)) * 64
    img = input_image.resize((W, H), resample=Image.LANCZOS)
    model = RealESRGAN(device, scale=scale)
    model.load_weights(f'models/upscalers/RealESRGAN_x{scale}.pth', download=False)
    img = model.predict(img)
    if scale == 2:
        img = lazy_realesrgan_x2.predict(img)
    else:
        img = lazy_realesrgan_x4.predict(img)
    return img

def calculate_brightness_factors(hdr_intensity):
    factors = [1.0] * 9
    if hdr_intensity > 0:
        factors = [1.0 - 0.9 * hdr_intensity, 1.0 - 0.7 * hdr_intensity, 1.0 - 0.45 * hdr_intensity,
                   1.0 - 0.25 * hdr_intensity, 1.0, 1.0 + 0.2 * hdr_intensity,
                   1.0 + 0.4 * hdr_intensity, 1.0 + 0.6 * hdr_intensity, 1.0 + 0.8 * hdr_intensity]
    return factors

def pil_to_cv(pil_image):
    return cv2.cvtColor(np.array(pil_image), cv2.COLOR_RGB2BGR)

def adjust_brightness(cv_image, factor):
    hsv_image = cv2.cvtColor(cv_image, cv2.COLOR_BGR2HSV)
    h, s, v = cv2.split(hsv_image)
    v = np.clip(v * factor, 0, 255).astype('uint8')
    adjusted_hsv = cv2.merge([h, s, v])
    return cv2.cvtColor(adjusted_hsv, cv2.COLOR_HSV2BGR)

def create_hdr_effect(original_image, hdr):
    cv_original = pil_to_cv(original_image)
    brightness_factors = calculate_brightness_factors(hdr)
    images = [adjust_brightness(cv_original, factor) for factor in brightness_factors]

    merge_mertens = cv2.createMergeMertens()
    hdr_image = merge_mertens.process(images)
    hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8')
    hdr_image_pil = Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))

    return hdr_image_pil

def process_image(input_image, prompt, negative_prompt, resolution=2048, num_inference_steps=50, guidance_scale=3, strength=0.35, hdr=0):
    condition_image = resize_and_upscale(input_image, resolution)
    condition_image = create_hdr_effect(condition_image, hdr)

    result = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        image=condition_image,
        control_image=condition_image,
        width=condition_image.size[0],
        height=condition_image.size[1],
        strength=strength,
        num_inference_steps=num_inference_steps,
        guidance_scale=guidance_scale,
        generator=torch.manual_seed(0),
    ).images[0]

    return result

# Simple options
simple_options = [
    gr.Image(type="pil", label="Input Image"),
    gr.Slider(minimum=2048, maximum=3072, step=512, value=2048, label="Resolution"),
    gr.Slider(minimum=10, maximum=100, step=10, value=20, label="Inference Steps"),
    gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=0.35, label="Strength"),
    gr.Slider(minimum=0.0, maximum=1.0, step=0.1, value=0, label="HDR"),
    gr.Slider(minimum=1, maximum=10, step=0.1, value=3, label="Guidance Scale")
]

# Create the Gradio interface
iface = gr.Interface(
    fn=gradio_process_image,
    inputs=simple_options,
    outputs=gr.Image(type="pil", label="Output Image"),
    title="Image Processing with Stable Diffusion",
    description="Upload an image and adjust the settings to process it using Stable Diffusion."
)

iface.launch()