Spaces:
Running
on
Zero
Running
on
Zero
File size: 10,614 Bytes
7467e65 4da2d90 2991135 4da2d90 2991135 9632f25 69d6988 4da2d90 2991135 4da2d90 2991135 f8ce661 2991135 79b12f9 9632f25 4da2d90 e3799c1 4da2d90 e3799c1 4da2d90 91d3bd5 9632f25 5f1b905 9632f25 91d3bd5 9632f25 05f54e2 fe5b9c4 5f1b905 91d3bd5 5f1b905 05f54e2 5f1b905 3e96d90 5f1b905 9632f25 82a71e3 91d3bd5 4981ff1 91d3bd5 e4c639b 91d3bd5 e4c639b 91d3bd5 fe5b9c4 91d3bd5 9632f25 a31c900 fe5b9c4 e4c639b fe5b9c4 4da2d90 e8864dd 91d3bd5 e4c639b 05f54e2 9632f25 fe5b9c4 e4c639b fe5b9c4 14ee7bd e2aa2f3 4da2d90 a31c900 5f1b905 0f14741 5f1b905 14ee7bd 5f1b905 e4c639b 9632f25 a31c900 5f1b905 14ee7bd e4c639b a7665b5 14ee7bd c93bbf7 ee3e703 e4c639b ee3e703 e4c639b 14ee7bd ee3e703 5f1b905 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 |
import spaces
import os
import requests
import time
import torch
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from diffusers.models import AutoencoderKL
from diffusers.models.attention_processor import AttnProcessor2_0
from PIL import Image
import cv2
import numpy as np
from RealESRGAN import RealESRGAN
import gradio as gr
from gradio_imageslider import ImageSlider
USE_TORCH_COMPILE = False
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def download_file(url, folder_path, filename):
if not os.path.exists(folder_path):
os.makedirs(folder_path)
file_path = os.path.join(folder_path, filename)
if os.path.isfile(file_path):
print(f"File already exists: {file_path}")
else:
response = requests.get(url, stream=True)
if response.status_code == 200:
with open(file_path, 'wb') as file:
for chunk in response.iter_content(chunk_size=1024):
file.write(chunk)
print(f"File successfully downloaded and saved: {file_path}")
else:
print(f"Error downloading the file. Status code: {response.status_code}")
def download_models():
models = {
"MODEL": ("https://huggingface.co/dantea1118/juggernaut_reborn/resolve/main/juggernaut_reborn.safetensors?download=true", "models/models/Stable-diffusion", "juggernaut_reborn.safetensors"),
"UPSCALER_X2": ("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x2.pth?download=true", "models/upscalers/", "RealESRGAN_x2.pth"),
"UPSCALER_X4": ("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x4.pth?download=true", "models/upscalers/", "RealESRGAN_x4.pth"),
"NEGATIVE_1": ("https://huggingface.co/philz1337x/embeddings/resolve/main/verybadimagenegative_v1.3.pt?download=true", "models/embeddings", "verybadimagenegative_v1.3.pt"),
"NEGATIVE_2": ("https://huggingface.co/datasets/AddictiveFuture/sd-negative-embeddings/resolve/main/JuggernautNegative-neg.pt?download=true", "models/embeddings", "JuggernautNegative-neg.pt"),
"LORA_1": ("https://huggingface.co/philz1337x/loras/resolve/main/SDXLrender_v2.0.safetensors?download=true", "models/Lora", "SDXLrender_v2.0.safetensors"),
"LORA_2": ("https://huggingface.co/philz1337x/loras/resolve/main/more_details.safetensors?download=true", "models/Lora", "more_details.safetensors"),
"CONTROLNET": ("https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11f1e_sd15_tile.pth?download=true", "models/ControlNet", "control_v11f1e_sd15_tile.pth"),
"VAE": ("https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.safetensors?download=true", "models/VAE", "vae-ft-mse-840000-ema-pruned.safetensors"),
}
for model, (url, folder, filename) in models.items():
download_file(url, folder, filename)
download_models()
def timer_func(func):
def wrapper(*args, **kwargs):
start_time = time.time()
result = func(*args, **kwargs)
end_time = time.time()
print(f"{func.__name__} took {end_time - start_time:.2f} seconds")
return result
return wrapper
class LazyLoadPipeline:
def __init__(self):
self.pipe = None
@timer_func
def load(self):
if self.pipe is None:
print("Starting to load the pipeline...")
self.pipe = self.setup_pipeline()
print(f"Moving pipeline to device: {device}")
self.pipe.to(device)
if USE_TORCH_COMPILE:
print("Compiling the model...")
self.pipe.unet = torch.compile(self.pipe.unet, mode="reduce-overhead", fullgraph=True)
@timer_func
def setup_pipeline(self):
print("Setting up the pipeline...")
controlnet = ControlNetModel.from_single_file(
"models/ControlNet/control_v11f1e_sd15_tile.pth", torch_dtype=torch.float16
)
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
model_path = "models/models/Stable-diffusion/juggernaut_reborn.safetensors"
pipe = StableDiffusionControlNetImg2ImgPipeline.from_single_file(
model_path,
controlnet=controlnet,
torch_dtype=torch.float16,
use_safetensors=True,
safety_checker=safety_checker
)
vae = AutoencoderKL.from_single_file(
"models/VAE/vae-ft-mse-840000-ema-pruned.safetensors",
torch_dtype=torch.float16
)
pipe.vae = vae
pipe.load_textual_inversion("models/embeddings/verybadimagenegative_v1.3.pt")
pipe.load_textual_inversion("models/embeddings/JuggernautNegative-neg.pt")
pipe.load_lora_weights("models/Lora/SDXLrender_v2.0.safetensors")
pipe.fuse_lora(lora_scale=0.5)
pipe.load_lora_weights("models/Lora/more_details.safetensors")
pipe.fuse_lora(lora_scale=1.)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)
return pipe
def __call__(self, *args, **kwargs):
return self.pipe(*args, **kwargs)
class LazyRealESRGAN:
def __init__(self, device, scale):
self.device = device
self.scale = scale
self.model = None
def load_model(self):
if self.model is None:
self.model = RealESRGAN(self.device, scale=self.scale)
self.model.load_weights(f'models/upscalers/RealESRGAN_x{self.scale}.pth', download=False)
self.model = torch.compile(self.model)
def predict(self, img):
self.load_model()
return self.model.predict(img)
lazy_realesrgan_x2 = LazyRealESRGAN(device, scale=2)
lazy_realesrgan_x4 = LazyRealESRGAN(device, scale=4)
@timer_func
def resize_and_upscale(input_image, resolution):
scale = 2 if resolution <= 2048 else 4
input_image = input_image.convert("RGB")
W, H = input_image.size
k = float(resolution) / min(H, W)
H = int(round(H * k / 64.0)) * 64
W = int(round(W * k / 64.0)) * 64
img = input_image.resize((W, H), resample=Image.LANCZOS)
if scale == 2:
img = lazy_realesrgan_x2.predict(img)
else:
img = lazy_realesrgan_x4.predict(img)
return img
@timer_func
def create_hdr_effect(original_image, hdr):
if hdr == 0:
return original_image
cv_original = cv2.cvtColor(np.array(original_image), cv2.COLOR_RGB2BGR)
factors = [1.0 - 0.9 * hdr, 1.0 - 0.7 * hdr, 1.0 - 0.45 * hdr,
1.0 - 0.25 * hdr, 1.0, 1.0 + 0.2 * hdr,
1.0 + 0.4 * hdr, 1.0 + 0.6 * hdr, 1.0 + 0.8 * hdr]
images = [cv2.convertScaleAbs(cv_original, alpha=factor) for factor in factors]
merge_mertens = cv2.createMergeMertens()
hdr_image = merge_mertens.process(images)
hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8')
return Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))
lazy_pipe = LazyLoadPipeline()
lazy_pipe.load()
def prepare_image(input_image, resolution, hdr):
condition_image = resize_and_upscale(input_image, resolution)
condition_image = create_hdr_effect(condition_image, hdr)
return condition_image
@spaces.GPU
@timer_func
def gradio_process_image(input_image, resolution, num_inference_steps, strength, hdr, guidance_scale):
print("Starting image processing...")
torch.cuda.empty_cache()
condition_image = prepare_image(input_image, resolution, hdr)
prompt = "masterpiece, best quality, highres"
negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"
options = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"image": condition_image,
"control_image": condition_image,
"width": condition_image.size[0],
"height": condition_image.size[1],
"strength": strength,
"num_inference_steps": num_inference_steps,
"guidance_scale": guidance_scale,
"generator": torch.Generator(device=device).manual_seed(0),
}
print("Running inference...")
result = lazy_pipe(**options).images[0]
print("Image processing completed successfully")
# Convert input_image and result to numpy arrays
input_array = np.array(input_image)
result_array = np.array(result)
return [input_array, result_array]
title = """<h1 align="center">Image Upscaler with Tile Controlnet</h1>
<p align="center">The main ideas come from</p>
<p><center>
<a href="https://github.com/philz1337x/clarity-upscaler" target="_blank">[philz1337x]</a>
<a href="https://github.com/BatouResearch/controlnet-tile-upscale" target="_blank">[Pau-Lozano]</a>
</center></p>
"""
with gr.Blocks() as demo:
gr.HTML(title)
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
run_button = gr.Button("Enhance Image")
with gr.Column():
output_slider = ImageSlider(label="Before / After", type="numpy")
with gr.Accordion("Advanced Options", open=False):
resolution = gr.Slider(minimum=256, maximum=2048, value=512, step=256, label="Resolution")
num_inference_steps = gr.Slider(minimum=1, maximum=50, value=20, step=1, label="Number of Inference Steps")
strength = gr.Slider(minimum=0, maximum=1, value=0.4, step=0.01, label="Strength")
hdr = gr.Slider(minimum=0, maximum=1, value=0, step=0.1, label="HDR Effect")
guidance_scale = gr.Slider(minimum=0, maximum=20, value=3, step=0.5, label="Guidance Scale")
run_button.click(fn=gradio_process_image,
inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale],
outputs=output_slider)
# Add examples with all required inputs
gr.Examples(
examples=[
["image1.jpg", 512, 20, 0.4, 0, 3],
["image2.png", 512, 20, 0.4, 0, 3],
["image3.png", 512, 20, 0.4, 0, 3],
],
inputs=[input_image, resolution, num_inference_steps, strength, hdr, guidance_scale],
outputs=output_slider,
fn=gradio_process_image,
cache_examples=True,
)
demo.launch(share=True) |