File size: 19,048 Bytes
7e690c7
9d6b28e
 
 
 
 
 
 
 
 
 
5646d18
749f0a2
9d6b28e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c6243d2
 
9d6b28e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2694d70
 
9d6b28e
 
5646d18
 
9d6b28e
 
 
2694d70
9d6b28e
 
 
2694d70
9d6b28e
 
 
 
 
 
 
 
a18610d
9d6b28e
 
 
 
 
 
a18610d
9d6b28e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17135c5
 
9d6b28e
 
 
 
 
17135c5
 
 
 
 
 
9d6b28e
 
 
 
 
 
17135c5
 
 
9d6b28e
17135c5
9d6b28e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2694d70
9d6b28e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2694d70
9d6b28e
6f165b5
9d6b28e
 
2694d70
9d6b28e
 
 
 
 
 
 
 
72fd6ee
 
 
 
 
 
 
 
 
9d6b28e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17135c5
9d6b28e
 
 
 
17135c5
 
 
 
 
 
 
 
9d6b28e
17135c5
 
9d6b28e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b09136a
72fd6ee
9d6b28e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
72fd6ee
9d6b28e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0855740
 
14050a4
0855740
 
 
 
 
 
 
 
9d6b28e
 
0855740
9d6b28e
 
 
 
 
5a631ed
 
9d6b28e
 
 
 
 
6f165b5
9d6b28e
 
 
 
 
 
 
 
 
72fd6ee
9d6b28e
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
import spaces
import os
import requests
import time
import io
import torch
from PIL import Image
import cv2
import numpy as np
from diffusers import StableDiffusionControlNetImg2ImgPipeline, ControlNetModel, DDIMScheduler
from diffusers.models import AutoencoderKL
from diffusers.models.attention_processor import AttnProcessor2_0
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
from RealESRGAN import RealESRGAN
import gradio as gr
import subprocess
from tqdm import tqdm
import shutil
import uuid
import json
import threading

# Constants
USE_TORCH_COMPILE = False
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"

# Ensure CUDA is available
if not torch.cuda.is_available():
    raise RuntimeError("CUDA is not available. This script requires a CUDA-capable GPU.")

device = torch.device("cuda")
print(f"Using device: {device}")

# Replace the global abort_status with an Event
abort_event = threading.Event()

css = """
.gradio-container {
    max-width: 100% !important;
    padding: 20px !important;
}
#component-0 {
    height: auto !important;
    overflow: visible !important;
}
"""

def abort_job():
    if abort_event.is_set():
        return "Job is already being aborted."
    abort_event.set()
    return "Aborting job... Processing will stop after the current frame."

def check_ffmpeg():
    try:
        subprocess.run(["ffmpeg", "-version"], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True)
        return True
    except (subprocess.CalledProcessError, FileNotFoundError):
        return False

def download_file(url, folder_path, filename):
    if not os.path.exists(folder_path):
        os.makedirs(folder_path)
    file_path = os.path.join(folder_path, filename)

    if os.path.isfile(file_path):
        print(f"File already exists: {file_path}")
    else:
        response = requests.get(url, stream=True)
        if response.status_code == 200:
            with open(file_path, 'wb') as file:
                for chunk in response.iter_content(chunk_size=1024):
                    file.write(chunk)
            print(f"File successfully downloaded and saved: {file_path}")
        else:
            print(f"Error downloading the file. Status code: {response.status_code}")

def download_models():
    models = {
        "MODEL": ("https://huggingface.co/dantea1118/juggernaut_reborn/resolve/main/juggernaut_reborn.safetensors?download=true", "models/models/Stable-diffusion", "juggernaut_reborn.safetensors"),
        "UPSCALER_X2": ("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x2.pth?download=true", "models/upscalers/", "RealESRGAN_x2.pth"),
        "UPSCALER_X4": ("https://huggingface.co/ai-forever/Real-ESRGAN/resolve/main/RealESRGAN_x4.pth?download=true", "models/upscalers/", "RealESRGAN_x4.pth"),
        "NEGATIVE_1": ("https://huggingface.co/philz1337x/embeddings/resolve/main/verybadimagenegative_v1.3.pt?download=true", "models/embeddings", "verybadimagenegative_v1.3.pt"),
        "NEGATIVE_2": ("https://huggingface.co/datasets/AddictiveFuture/sd-negative-embeddings/resolve/main/JuggernautNegative-neg.pt?download=true", "models/embeddings", "JuggernautNegative-neg.pt"),
        "LORA_1": ("https://huggingface.co/philz1337x/loras/resolve/main/SDXLrender_v2.0.safetensors?download=true", "models/Lora", "SDXLrender_v2.0.safetensors"),
        "LORA_2": ("https://huggingface.co/philz1337x/loras/resolve/main/more_details.safetensors?download=true", "models/Lora", "more_details.safetensors"),
        "CONTROLNET": ("https://huggingface.co/lllyasviel/ControlNet-v1-1/resolve/main/control_v11f1e_sd15_tile.pth?download=true", "models/ControlNet", "control_v11f1e_sd15_tile.pth"),
        "VAE": ("https://huggingface.co/stabilityai/sd-vae-ft-mse-original/resolve/main/vae-ft-mse-840000-ema-pruned.safetensors?download=true", "models/VAE", "vae-ft-mse-840000-ema-pruned.safetensors"),
    }

    for model, (url, folder, filename) in models.items():
        download_file(url, folder, filename)

download_models()

def timer_func(func):
    def wrapper(*args, **kwargs):
        start_time = time.time()
        result = func(*args, **kwargs)
        end_time = time.time()
        print(f"{func.__name__} took {end_time - start_time:.2f} seconds")
        return result
    return wrapper

class ModelManager:
    def __init__(self):
        self.pipe = None
        self.realesrgan_x2 = None
        self.realesrgan_x4 = None

    def load_models(self):
        if self.pipe is None:           
            self.pipe = self.setup_pipeline()
            self.pipe.to(device)
            self.pipe.unet.set_attn_processor(AttnProcessor2_0())
            self.pipe.vae.set_attn_processor(AttnProcessor2_0())
            if USE_TORCH_COMPILE:
                self.pipe.unet = torch.compile(self.pipe.unet, mode="reduce-overhead", fullgraph=True)

        if self.realesrgan_x2 is None:           
            self.realesrgan_x2 = RealESRGAN(device, scale=2)
            self.realesrgan_x2.load_weights('models/upscalers/RealESRGAN_x2.pth', download=False)

        if self.realesrgan_x4 is None:            
            self.realesrgan_x4 = RealESRGAN(device, scale=4)
            self.realesrgan_x4.load_weights('models/upscalers/RealESRGAN_x4.pth', download=False)


    def setup_pipeline(self):
        controlnet = ControlNetModel.from_single_file(
            "models/ControlNet/control_v11f1e_sd15_tile.pth", torch_dtype=torch.float16
        )
        safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker")
        model_path = "models/models/Stable-diffusion/juggernaut_reborn.safetensors"
        pipe = StableDiffusionControlNetImg2ImgPipeline.from_single_file(
            model_path,
            controlnet=controlnet,
            torch_dtype=torch.float16,
            use_safetensors=True,
            safety_checker=safety_checker
        )
        vae = AutoencoderKL.from_single_file(
            "models/VAE/vae-ft-mse-840000-ema-pruned.safetensors",
            torch_dtype=torch.float16
        )
        pipe.vae = vae
        pipe.load_textual_inversion("models/embeddings/verybadimagenegative_v1.3.pt")
        pipe.load_textual_inversion("models/embeddings/JuggernautNegative-neg.pt")
        pipe.load_lora_weights("models/Lora/SDXLrender_v2.0.safetensors")
        pipe.fuse_lora(lora_scale=0.5)
        pipe.load_lora_weights("models/Lora/more_details.safetensors")
        pipe.fuse_lora(lora_scale=1.)
        pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
        pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.3, b2=1.4)
        return pipe

    @timer_func
    def process_image_batch(self, input_images, resolution, num_inference_steps, strength, hdr, guidance_scale):
        condition_images = [self.prepare_image(img, resolution, hdr) for img in input_images]

        prompt = "masterpiece, best quality, highres"
        negative_prompt = "low quality, normal quality, ugly, blurry, blur, lowres, bad anatomy, bad hands, cropped, worst quality, verybadimagenegative_v1.3, JuggernautNegative-neg"

        options = {
            "prompt": [prompt] * len(input_images),
            "negative_prompt": [negative_prompt] * len(input_images),
            "image": condition_images,
            "control_image": condition_images,
            "width": condition_images[0].size[0],
            "height": condition_images[0].size[1],
            "strength": strength,
            "num_inference_steps": num_inference_steps,
            "guidance_scale": guidance_scale,
            "generator": torch.Generator(device=device).manual_seed(0),
        }

        print("Running inference on batch...")
        results = self.pipe(**options).images
        print("Batch processing completed successfully")

        return results

    def prepare_image(self, input_image, resolution, hdr):
        condition_image = self.resize_and_upscale(input_image, resolution)
        condition_image = self.create_hdr_effect(condition_image, hdr)
        return condition_image

    @timer_func
    def resize_and_upscale(self, input_image, resolution):
        scale = 2 if resolution <= 2048 else 4

        if isinstance(input_image, str):
            input_image = Image.open(input_image).convert("RGB")
        elif isinstance(input_image, io.IOBase):
            input_image = Image.open(input_image).convert("RGB")
        elif isinstance(input_image, Image.Image):
            input_image = input_image.convert("RGB")
        elif isinstance(input_image, np.ndarray):
            input_image = Image.fromarray(input_image).convert("RGB")
        else:
            raise ValueError(f"Unsupported input type for input_image: {type(input_image)}")

        W, H = input_image.size
        k = float(resolution) / min(H, W)
        H = int(round(H * k / 64.0)) * 64
        W = int(round(W * k / 64.0)) * 64
        img = input_image.resize((W, H), resample=Image.LANCZOS)

        if scale == 2:
            img = self.realesrgan_x2.predict(img)
        else:
            img = self.realesrgan_x4.predict(img)

        return img

    @timer_func
    def create_hdr_effect(self, original_image, hdr):
        if hdr == 0:
            return original_image
        cv_original = cv2.cvtColor(np.array(original_image), cv2.COLOR_RGB2BGR)
        factors = [1.0 - 0.9 * hdr, 1.0 - 0.7 * hdr, 1.0 - 0.45 * hdr,
                   1.0 - 0.25 * hdr, 1.0, 1.0 + 0.2 * hdr,
                   1.0 + 0.4 * hdr, 1.0 + 0.6 * hdr, 1.0 + 0.8 * hdr]
        images = [cv2.convertScaleAbs(cv_original, alpha=factor) for factor in factors]
        merge_mertens = cv2.createMergeMertens()
        hdr_image = merge_mertens.process(images)
        hdr_image_8bit = np.clip(hdr_image * 255, 0, 255).astype('uint8')
        hdr_result = Image.fromarray(cv2.cvtColor(hdr_image_8bit, cv2.COLOR_BGR2RGB))

        return hdr_result

model_manager = ModelManager()
model_manager.load_models()  # Ensure models are loaded

def extract_frames(video_path, output_folder):
    os.makedirs(output_folder, exist_ok=True)
    command = [
        'ffmpeg',
        '-i', video_path,
        '-vf', 'fps=30',
        f'{output_folder}/frame_%06d.png'
    ]
    subprocess.run(command, check=True)

def frames_to_video(input_folder, output_path, fps, original_video_path):
    # First, create the video from frames without audio
    temp_output_path = output_path + "_temp.mp4"
    video_command = [
        'ffmpeg',
        '-framerate', str(fps),
        '-i', f'{input_folder}/frame_%06d.png',
        '-c:v', 'libx264',
        '-pix_fmt', 'yuv420p',
        temp_output_path
    ]
    subprocess.run(video_command, check=True)

    # Then, copy the audio from the original video and add it to the new video
    final_command = [
        'ffmpeg',
        '-i', temp_output_path,
        '-i', original_video_path,
        '-c:v', 'copy',
        '-c:a', 'aac',
        '-map', '0:v:0',
        '-map', '1:a:0?',
        '-shortest',
        output_path
    ]
    subprocess.run(final_command, check=True)

    # Remove the temporary file
    os.remove(temp_output_path)


@timer_func
def process_video(input_video, resolution, num_inference_steps, strength, hdr, guidance_scale, max_frames=None, frame_interval=1, preserve_frames=False, batch_size=8, progress=gr.Progress()):
    abort_event.clear()  # Clear the abort flag at the start of a new job
    print("Starting video processing...")
    

    # Create a new job folder
    job_id = str(uuid.uuid4())
    job_folder = os.path.join("jobs", job_id)
    os.makedirs(job_folder, exist_ok=True)

    # Save job config
    config = {
    "resolution": resolution,
    "num_inference_steps": num_inference_steps,
    "strength": strength,
    "hdr": hdr,
    "guidance_scale": guidance_scale,
    "max_frames": max_frames,
    "frame_interval": frame_interval,
    "preserve_frames": preserve_frames,
    "batch_size": batch_size
    }
    with open(os.path.join(job_folder, "config.json"), "w") as f:
        json.dump(config, f)

    # If input_video is a file object or has a 'name' attribute, use its name
    if isinstance(input_video, io.IOBase) or hasattr(input_video, 'name'):
        input_video = input_video.name

    # Set up folders
    frames_folder = os.path.join(job_folder, "video_frames")
    processed_frames_folder = os.path.join(job_folder, "processed_frames")
    os.makedirs(frames_folder, exist_ok=True)
    os.makedirs(processed_frames_folder, exist_ok=True)

    # Extract frames
    progress(0.1, desc="Extracting frames...")
    extract_frames(input_video, frames_folder)

    # Process selected frames
    frame_files = sorted(os.listdir(frames_folder))
    total_frames = len(frame_files)
    frames_to_process = min(max_frames, total_frames) if max_frames else total_frames

    try:
        progress(0.2, desc="Processing frames...")
        for i in tqdm(range(0, frames_to_process, batch_size), desc="Processing batches"):
            if abort_event.is_set():
                print("Job aborted. Stopping processing of new frames.")
                break

            batch_frames = frame_files[i:min(i+batch_size, frames_to_process)]
            input_images = [Image.open(os.path.join(frames_folder, frame)) for frame in batch_frames]
            
            processed_images = model_manager.process_image_batch(input_images, resolution, num_inference_steps, strength, hdr, guidance_scale)

            for frame_file, processed_image in zip(batch_frames, processed_images):
                output_frame_path = os.path.join(processed_frames_folder, frame_file)
                if not preserve_frames or not os.path.exists(output_frame_path):
                    processed_image.save(output_frame_path)
                
            progress((0.2 + 0.7 * (i + batch_size) / frames_to_process), desc=f"Processed batch {i//batch_size + 1}/{(frames_to_process-1)//batch_size + 1}")

        # Always attempt to reassemble video
        progress(0.9, desc="Reassembling video...")
        input_filename = os.path.splitext(os.path.basename(input_video))[0]
        output_video = os.path.join(job_folder, f"{input_filename}_upscaled.mp4")
        frames_to_video(processed_frames_folder, output_video, 30, input_video)

        if abort_event.is_set():
            progress(1.0, desc="Video processing aborted, but partial result saved")
            print("Video processing aborted, but partial result saved")
        else:
            progress(1.0, desc="Video processing completed successfully")
            print("Video processing completed successfully")

        return output_video

    except Exception as e:
        print(f"An error occurred during processing: {str(e)}")
        progress(1.0, desc=f"Error: {str(e)}")
        return None

@spaces.GPU(duration=200)
def gradio_process_media(input_media, resolution, num_inference_steps, strength, hdr, guidance_scale, max_frames, frame_interval, preserve_frames, batch_size, progress=gr.Progress()):
    abort_event.clear()  # Clear the abort flag at the start of a new job
    if input_media is None:
        return None, "No input media provided."

    print(f"Input media type: {type(input_media)}")

    # Get the file path
    if isinstance(input_media, str):
        file_path = input_media
    elif isinstance(input_media, io.IOBase):
        file_path = input_media.name
    elif hasattr(input_media, 'name'):
        file_path = input_media.name
    else:
        raise ValueError(f"Unsupported input type: {type(input_media)}")

    print(f"File path: {file_path}")

    # Check if the file is a video
    video_extensions = ('.mp4', '.avi', '.mov', '.mkv')
    if file_path.lower().endswith(video_extensions):
        print("Processing video...")
        result = process_video(file_path, resolution, num_inference_steps, strength, hdr, guidance_scale, max_frames, frame_interval, preserve_frames, batch_size, progress)
        if result:
            return result, "Video processing completed successfully."
        else:
            return None, "Error occurred during video processing."
    else:
        print("Processing image...")
        result = model_manager.process_image(file_path, resolution, num_inference_steps, strength, hdr, guidance_scale)
        if result:
            # Save the processed image
            output_path = os.path.join("processed_images", f"processed_{os.path.basename(file_path)}")
            os.makedirs(os.path.dirname(output_path), exist_ok=True)
            result.save(output_path)
            return output_path, "Image processing completed successfully."
        else:
            return None, "Error occurred during image processing."

title = """
    <h1 align="center">Simple Slow Video Upscaler</h1>
    <p align="center">Currently takes too long :( Please try 1-2 seconds videos only.</p>
    <p align="center">
    <a href="https://twitter.com/hrishioa" target="_blank">[Hrishi]</a>
    <a href="https://huggingface.co/spaces/gokaygokay/Tile-Upscaler" target="_blank">[gokaygokay/Tile-Upscaler]</a>
    <a href="https://github.com/philz1337x/clarity-upscaler" target="_blank">[philz1337x]</a>
    <a href="https://github.com/BatouResearch/controlnet-tile-upscale" target="_blank">[BatouResearch]</a>
    <a href="https://github.com/hrishioa/SimpleSlowVideoUpscaler" target="_blank">[Hrishi GitHub]</a>
    </p>
    """
# Update the Gradio interface
with gr.Blocks(css=css, theme=gr.themes.Default(primary_hue="blue")) as iface:
    gr.HTML(title)

    with gr.Row():
        with gr.Column(scale=2):
            input_media = gr.File(label="Input Media (Image or Video)")
            resolution = gr.Slider(256, 2048, 512, step=256, label="Resolution")
            num_inference_steps = gr.Slider(1, 50, 20, step=1, label="Number of Inference Steps")
            strength = gr.Slider(0, 1, 0.05, step=0.01, label="Strength")
            hdr = gr.Slider(0, 1, 0, step=0.1, label="HDR Effect")
            guidance_scale = gr.Slider(0, 20, 5, step=0.5, label="Guidance Scale")
            max_frames = gr.Number(label="Max Frames to Process (leave empty for full video)", precision=0)
            frame_interval = gr.Slider(1, 30, 1, step=1, label="Frame Interval (process every nth frame)")
            preserve_frames = gr.Checkbox(label="Preserve Existing Processed Frames", value=True)
            batch_size = gr.Slider(1, 16, 8, step=1, label="Batch Size")

        with gr.Column(scale=1):
            submit_button = gr.Button("Process Media")
            abort_button = gr.Button("Abort Job")
            output = gr.File(label="Processed Media")
            status = gr.Markdown("Ready to process media.")

    submit_button.click(
        gradio_process_media,
        inputs=[input_media, resolution, num_inference_steps, strength, hdr, guidance_scale, max_frames, frame_interval, preserve_frames, batch_size],
        outputs=[output, status]
    )

    abort_button.click(abort_job, inputs=[], outputs=status)

# Launch the Gradio app
iface.launch()