import gradio as gr from datasets import load_dataset import re import os import requests from share_btn import community_icon_html, loading_icon_html, share_js # TODO #word_list_dataset = load_dataset("stabilityai/word-list", data_files="list.txt", use_auth_token=True) #word_list = word_list_dataset["train"]['text'] word_list = [] def infer(prompt, negative, scale): for filter in word_list: if re.search(rf"\b{filter}\b", prompt): raise gr.Error("Unsafe content found. Please try again with different prompts.") images = [] url = os.getenv('JAX_BACKEND_URL') payload = {'prompt': prompt, 'negative_prompt': negative, 'guidance_scale': scale} images_request = requests.post(url, json = payload) for image in images_request.json()["images"]: image_b64 = (f"data:image/jpeg;base64,{image}") images.append(image_b64) return images css = """ .gradio-container { font-family: 'IBM Plex Sans', sans-serif; } .gr-button { color: white; border-color: black; background: black; } input[type='range'] { accent-color: black; } .dark input[type='range'] { accent-color: #dfdfdf; } .gradio-container { max-width: 730px !important; margin: auto; padding-top: 1.5rem; } #gallery { min-height: 22rem; margin-bottom: 15px; margin-left: auto; margin-right: auto; border-bottom-right-radius: .5rem !important; border-bottom-left-radius: .5rem !important; } #gallery>div>.h-full { min-height: 20rem; } .details:hover { text-decoration: underline; } .gr-button { white-space: nowrap; } .gr-button:focus { border-color: rgb(147 197 253 / var(--tw-border-opacity)); outline: none; box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000); --tw-border-opacity: 1; --tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color); --tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color); --tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity)); --tw-ring-opacity: .5; } #advanced-btn { font-size: .7rem !important; line-height: 19px; margin-top: 12px; margin-bottom: 12px; padding: 2px 8px; border-radius: 14px !important; } #advanced-options { display: none; margin-bottom: 20px; } .footer { margin-bottom: 45px; margin-top: 35px; text-align: center; border-bottom: 1px solid #e5e5e5; } .footer>p { font-size: .8rem; display: inline-block; padding: 0 10px; transform: translateY(10px); background: white; } .dark .footer { border-color: #303030; } .dark .footer>p { background: #0b0f19; } .acknowledgments h4{ margin: 1.25em 0 .25em 0; font-weight: bold; font-size: 115%; } .animate-spin { animation: spin 1s linear infinite; } @keyframes spin { from { transform: rotate(0deg); } to { transform: rotate(360deg); } } #share-btn-container { display: flex; padding-left: 0.5rem !important; padding-right: 0.5rem !important; background-color: #000000; justify-content: center; align-items: center; border-radius: 9999px !important; width: 13rem; margin-top: 10px; margin-left: auto; } #share-btn { all: initial; color: #ffffff;font-weight: 600; cursor:pointer; font-family: 'IBM Plex Sans', sans-serif; margin-left: 0.5rem !important; padding-top: 0.25rem !important; padding-bottom: 0.25rem !important;right:0; } #share-btn * { all: unset; } #share-btn-container div:nth-child(-n+2){ width: auto !important; min-height: 0px !important; } #share-btn-container .wrap { display: none !important; } .gr-form{ flex: 1 1 50%; border-top-right-radius: 0; border-bottom-right-radius: 0; } #prompt-container{ gap: 0; } #prompt-text-input, #negative-prompt-text-input{padding: .45rem 0.625rem} #component-16{border-top-width: 1px!important;margin-top: 1em} .image_duplication{position: absolute; width: 100px; left: 50px} """ block = gr.Blocks(css=css) examples = [ [ 'A high tech solarpunk utopia in the Amazon rainforest', 'low quality', 9 ], [ 'A pikachu fine dining with a view to the Eiffel Tower', 'low quality', 9 ], [ 'A mecha robot in a favela in expressionist style', 'low quality, 3d, photorealistic', 9 ], [ 'an insect robot preparing a delicious meal', 'low quality, illustration', 9 ], [ "A small cabin on top of a snowy mountain in the style of Disney, artstation", 'low quality, ugly', 9 ], ] with block: gr.HTML( """

Stable Diffusion XL Demo

SDXL is the latest text-to-image model from StabilityAI. This demo runs on a backend powered by Google Cloud TPU v5e hardware, to achieve efficient and cost-effective inference of large 1024×1024 images.

See here more details about how it works [pending].

""" ) with gr.Group(): with gr.Row(elem_id="prompt-container").style(mobile_collapse=False, equal_height=True): text = gr.Textbox( label="Enter your prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", elem_id="prompt-text-input", ) btn = gr.Button("Generate", scale=0) gallery = gr.Gallery( label="Generated images", show_label=False, elem_id="gallery" ).style(grid=[2], height="auto") with gr.Group(elem_id="container-advanced-btns"): with gr.Group(elem_id="share-btn-container"): community_icon = gr.HTML(community_icon_html) loading_icon = gr.HTML(loading_icon_html) share_button = gr.Button("Share to community", elem_id="share-btn") with gr.Group(): with gr.Accordion("Advanced settings", open=False): negative = gr.Textbox( label="Enter your negative prompt", show_label=False, max_lines=1, placeholder="Enter a negative prompt", elem_id="negative-prompt-text-input", ) guidance_scale = gr.Slider( label="Guidance Scale", minimum=0, maximum=50, value=9, step=0.1 ) ex = gr.Examples(examples=examples, fn=infer, inputs=[text, negative, guidance_scale], outputs=[gallery, community_icon, loading_icon, share_button], cache_examples=False) ex.dataset.headers = [""] negative.submit(infer, inputs=[text, negative, guidance_scale], outputs=[gallery], postprocess=False) text.submit(infer, inputs=[text, negative, guidance_scale], outputs=[gallery], postprocess=False) btn.click(infer, inputs=[text, negative, guidance_scale], outputs=[gallery], postprocess=False) share_button.click( None, [], [], _js=share_js, ) gr.HTML( """ """ ) with gr.Accordion(label="License", open=False): gr.HTML( """

LICENSE

The model is licensed with a Stability AI CreativeML Open RAIL++-M license. The License allows users to take advantage of the model in a wide range of settings (including free use and redistribution) as long as they respect the specific use case restrictions outlined, which correspond to model applications the licensor deems ill-suited for the model or are likely to cause harm. For the full list of restrictions please read the license

Biases and content acknowledgment

Despite how impressive being able to turn text into image is, beware that this model may output content that reinforces or exacerbates societal biases, as well as realistic faces, pornography and violence. The model was trained on the LAION-5B dataset, which scraped non-curated image-text-pairs from the internet (the exception being the removal of illegal content) and is meant for research purposes. You can read more in the model card

""" ) block.queue(concurrency_count=4, max_size=10).launch() #block.launch(server_name="0.0.0.0")