Spaces:
Running
Running
"""This space is taken and modified from https://huggingface.co/spaces/merve/compare_clip_siglip""" | |
import torch | |
from transformers import AutoModel, AutoProcessor | |
import gradio as gr | |
################################################################################ | |
# Load the models | |
################################################################################ | |
sg1_ckpt = "google/siglip-so400m-patch14-384" | |
siglip1_model = AutoModel.from_pretrained(sg1_ckpt, device_map="cpu").eval() | |
siglip1_processor = AutoProcessor.from_pretrained(sg1_ckpt) | |
sg2_ckpt = "google/siglip2-so400m-patch14-384" | |
siglip2_model = AutoModel.from_pretrained(sg2_ckpt, device_map="cpu").eval() | |
siglip2_processor = AutoProcessor.from_pretrained(sg2_ckpt) | |
################################################################################ | |
# Utilities | |
################################################################################ | |
def postprocess_siglip(sg1_probs, sg2_probs, labels): | |
sg1_output = {labels[i]: sg1_probs[0][i] for i in range(len(labels))} | |
sg2_output = {labels[i]: sg2_probs[0][i] for i in range(len(labels))} | |
return sg1_output, sg2_output | |
def siglip_detector(image, texts): | |
sg1_inputs = siglip1_processor( | |
text=texts, images=image, return_tensors="pt", padding="max_length", max_length=64 | |
).to("cpu") | |
sg2_inputs = siglip2_processor( | |
text=texts, images=image, return_tensors="pt", padding="max_length", max_length=64 | |
).to("cpu") | |
with torch.no_grad(): | |
sg1_outputs = siglip1_model(**sg1_inputs) | |
sg2_outputs = siglip2_model(**sg2_inputs) | |
sg1_logits_per_image = sg1_outputs.logits_per_image | |
sg2_logits_per_image = sg2_outputs.logits_per_image | |
sg1_probs = torch.sigmoid(sg1_logits_per_image) | |
sg2_probs = torch.sigmoid(sg2_logits_per_image) | |
return sg1_probs, sg2_probs | |
def infer(image, candidate_labels): | |
candidate_labels = [label.lstrip(" ") for label in candidate_labels.split(",")] | |
sg1_probs, sg2_probs = siglip_detector(image, candidate_labels) | |
return postprocess_siglip(sg1_probs, sg2_probs, labels=candidate_labels) | |
with gr.Blocks() as demo: | |
gr.Markdown("# Compare SigLIP 1 and SigLIP 2") | |
gr.Markdown( | |
"Compare the performance of SigLIP 1 and SigLIP 2 on zero-shot classification in this Space :point_down:" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(type="pil") | |
text_input = gr.Textbox(label="Input a list of labels (comma seperated)") | |
run_button = gr.Button("Run", visible=True) | |
with gr.Column(): | |
siglip1_output = gr.Label(label="SigLIP 1 Output", num_top_classes=3) | |
siglip2_output = gr.Label(label="SigLIP 2 Output", num_top_classes=3) | |
examples = [ | |
["./baklava.jpg", "dessert on a plate, a serving of baklava, a plate and spoon"], | |
["./cat.jpg", "a cat, two cats, three cats"], | |
["./cat.jpg", "two sleeping cats, two cats playing, three cats laying down"], | |
] | |
gr.Examples( | |
examples=examples, | |
inputs=[image_input, text_input], | |
outputs=[siglip1_output, siglip2_output], | |
fn=infer, | |
) | |
run_button.click(fn=infer, inputs=[image_input, text_input], outputs=[siglip1_output, siglip2_output]) | |
demo.launch() | |