import gradio as gr import onnxruntime from src.face_judgement_align import IDphotos_create from hivisionai.hycv.vision import add_background from src.layoutCreate import generate_layout_photo, generate_layout_image import pathlib import numpy as np import os #EXEC_DIR = os.path.dirname(os.path.realpath(sys.argv[0])) #适配获取exe执行路径 SCRIPT_DIR = os.path.dirname(__file__) #适配获取exe解压后临时目录的路径 os.chdir(SCRIPT_DIR) HY_HUMAN_MATTING_WEIGHTS_PATH = 'hivision_modnet.onnx' size_list_dict = {"一寸": (413, 295), "二寸": (626, 413), "教师资格证": (413, 295), "国家公务员考试": (413, 295), "初级会计考试": (413, 295)} color_list_dict = {"蓝色": (86, 140, 212), "白色": (255, 255, 255), "红色": (233, 51, 35)} # 设置Gradio examples def set_example_image(example: list) -> dict: return gr.Image.update(value=example[0]) # 检测RGB是否超出范围,如果超出则约束到0~255之间 def range_check(value, min_value=0, max_value=255): value = int(value) if value <= min_value: value = min_value elif value > max_value: value = max_value return value def idphoto_inference(input_image, mode_option, size_list_option, color_option, render_option, custom_color_R, custom_color_G, custom_color_B, custom_size_height, custom_size_width, head_measure_ratio=0.2, head_height_ratio=0.45, top_distance_max=0.12, top_distance_min=0.10): idphoto_json = { "size_mode": mode_option, "color_mode": color_option, "render_mode": render_option, } # 如果尺寸模式选择的是尺寸列表 if idphoto_json["size_mode"] == "尺寸列表": idphoto_json["size"] = size_list_dict[size_list_option] # 如果尺寸模式选择的是自定义尺寸 elif idphoto_json["size_mode"] == "自定义尺寸": id_height = int(custom_size_height) id_width = int(custom_size_width) if id_height < id_width or min(id_height, id_width) < 100 or max(id_height, id_width) > 1800: return { img_output_standard: gr.update(value=None), img_output_standard_hd: gr.update(value=None), notification: gr.update(value="宽度应不大于长度;长宽不应小于100,大于1800", visible=True)} idphoto_json["size"] = (id_height, id_width) else: idphoto_json["size"] = (None, None) # 如果颜色模式选择的是自定义底色 if idphoto_json["color_mode"] == "自定义底色": idphoto_json["color_bgr"] = (range_check(custom_color_R), range_check(custom_color_G), range_check(custom_color_B)) else: idphoto_json["color_bgr"] = color_list_dict[color_option] result_image_hd, result_image_standard, typography_arr, typography_rotate, \ _, _, _, _, status = IDphotos_create(input_image, mode=idphoto_json["size_mode"], size=idphoto_json["size"], head_measure_ratio=head_measure_ratio, head_height_ratio=head_height_ratio, align=False, beauty=False, fd68=None, human_sess=sess, IS_DEBUG=False, top_distance_max=top_distance_max, top_distance_min=top_distance_min) # 如果检测到人脸数量不等于1 if status == 0: result_messgae = { img_output_standard: gr.update(value=None), img_output_standard_hd: gr.update(value=None), notification: gr.update(value="人脸数量不等于1", visible=True) } # 如果检测到人脸数量等于1 else: if idphoto_json["render_mode"] == "纯色": result_image_standard = np.uint8( add_background(result_image_standard, bgr=idphoto_json["color_bgr"])) result_image_hd = np.uint8(add_background(result_image_hd, bgr=idphoto_json["color_bgr"])) elif idphoto_json["render_mode"] == "上下渐变(白)": result_image_standard = np.uint8( add_background(result_image_standard, bgr=idphoto_json["color_bgr"], mode="updown_gradient")) result_image_hd = np.uint8( add_background(result_image_hd, bgr=idphoto_json["color_bgr"], mode="updown_gradient")) else: result_image_standard = np.uint8( add_background(result_image_standard, bgr=idphoto_json["color_bgr"], mode="center_gradient")) result_image_hd = np.uint8( add_background(result_image_hd, bgr=idphoto_json["color_bgr"], mode="center_gradient")) if idphoto_json["size_mode"] == "只换底": result_layout_image = gr.update(visible=False) else: typography_arr, typography_rotate = generate_layout_photo(input_height=idphoto_json["size"][0], input_width=idphoto_json["size"][1]) result_layout_image = generate_layout_image(result_image_standard, typography_arr, typography_rotate, height=idphoto_json["size"][0], width=idphoto_json["size"][1]) result_messgae = { img_output_standard: result_image_standard, img_output_standard_hd: result_image_hd, img_output_layout: result_layout_image, notification: gr.update(visible=False)} return result_messgae if __name__ == "__main__": #HY_HUMAN_MATTING_WEIGHTS_PATH = "./hivision_modnet.onnx" sess = onnxruntime.InferenceSession(HY_HUMAN_MATTING_WEIGHTS_PATH) size_mode = ["尺寸列表", "只换底", "自定义尺寸"] size_list = ["一寸", "二寸", "教师资格证", "国家公务员考试", "初级会计考试"] colors = ["蓝色", "白色", "红色", "自定义底色"] render = ["纯色", "上下渐变(白)", "中心渐变(白)"] title = "