import argparse import os import random import numpy as np import torch import torch.backends.cudnn as cudnn import gradio as gr import argparse import torch from llava.constants import ( IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN, IMAGE_PLACEHOLDER, ) from llava.conversation import conv_templates, SeparatorStyle from llava.model.builder import load_pretrained_model from llava.utils import disable_torch_init from llava.mm_utils import ( process_images, tokenizer_image_token, get_model_name_from_path, ) from PIL import Image import requests from PIL import Image from io import BytesIO import re from .conversation import Chat, conv_llava_v1 # imports modules for registration def parse_args(): parser = argparse.ArgumentParser(description="Demo") parser.add_argument("--model-path", type=str, default="mqt_llava_weight") parser.add_argument("--model-base", type=str, default=None) # parser.add_argument("--image-file", type=str, required=True) # parser.add_argument("--query", type=str, required=True) parser.add_argument("--conv-mode", type=str, default='llava_v1') parser.add_argument("--sep", type=str, default=",") parser.add_argument("--temperature", type=float, default=0) parser.add_argument("--top_p", type=float, default=None) parser.add_argument("--num_beams", type=int, default=1) parser.add_argument("--max_new_tokens", type=int, default=512) parser.add_argument("--num-visual-tokens", type=int, default=256) args = parser.parse_args() return args # ======================================== # Model Initialization # ======================================== print('Initializing Chat') args = parse_args() if torch.cuda.is_available(): device='cuda:{}'.format(args.gpu_id) else: device=torch.device('cpu') disable_torch_init() model_name = get_model_name_from_path(args.model_path) tokenizer, model, image_processor, context_len = load_pretrained_model( args.model_path, args.model_base, model_name ) # vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train # vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg) chat = Chat(model, tokenizer, image_processor, args, device=device) print('Initialization Finished') # ======================================== # Gradio Setting # ======================================== def gradio_reset(chat_state, img_list): if chat_state is not None: chat_state.messages = [] if img_list is not None: img_list = [] return None, gr.update(value=None, interactive=True), gr.update(placeholder='Please upload your image first', interactive=False),gr.update(value="Upload & Start Chat", interactive=True), chat_state, img_list def upload_img(gr_img, text_input, chat_state): if gr_img is None: return None, None, gr.update(interactive=True), chat_state, None chat_state = conv_llava_v1.copy() #CONV_VISION.copy() img_list = [] llm_message = chat.upload_img(gr_img, chat_state, img_list) return gr.update(interactive=False), gr.update(interactive=True, placeholder='Type and press Enter'), gr.update(value="Start Chatting", interactive=False), chat_state, img_list def gradio_ask(user_message, chatbot, chat_state): if len(user_message) == 0: return gr.update(interactive=True, placeholder='Input should not be empty!'), chatbot, chat_state chat.ask(user_message, chat_state) chatbot = chatbot + [[user_message, None]] return '', chatbot, chat_state def gradio_answer(chatbot, chat_state, img_list, num_beams, temperature, num_visual_tokens): llm_message = chat.answer(conv=chat_state, img_list=img_list, num_beams=num_beams, temperature=temperature, num_visual_tokens=num_visual_tokens, )[0] chatbot[-1][1] = llm_message[0] return chatbot, chat_state, img_list title = """

Demo of MQT-LLaVA

""" description = """

This is the demo of MQT-LLaVA. Upload your images and start chatting!.
To use example questions, click example image, hit upload, and press enter in the chatbox.

""" article = """

""" #TODO show examples below with gr.Blocks() as demo: gr.Markdown(title) gr.Markdown(description) gr.Markdown(article) with gr.Row(): with gr.Column(scale=0.5): image = gr.Image(type="pil") upload_button = gr.Button(value="Upload & Start Chat", interactive=True, variant="primary") clear = gr.Button("Restart 🔄") num_visual_tokens = gr.Slider( minimum=1, maximum=256, value=256, step=1, interactive=True, label="Number of visual tokens", ) temperature = gr.Slider( minimum=0.1, maximum=2.0, value=1.0, step=0.1, interactive=True, label="Temperature", ) num_beams = gr.Slider( minimum=1, maximum=10, value=5, step=1, interactive=True, label="beam search numbers", ) with gr.Column(): chat_state = gr.State() img_list = gr.State() chatbot = gr.Chatbot(label='MQT-LLaVA') text_input = gr.Textbox(label='User', placeholder='Please upload your image first', interactive=False) gr.Examples(examples=[ [f"images/extreme_ironing.jpg", "What is unusual about this image?"], [f"images/waterview.jpg", "What are the things I should be cautious about when I visit here?"], ], inputs=[image, text_input]) upload_button.click(upload_img, [image, text_input, chat_state], [image, text_input, upload_button, chat_state, img_list]) text_input.submit(gradio_ask, [text_input, chatbot, chat_state], [text_input, chatbot, chat_state]).then( gradio_answer, [chatbot, chat_state, img_list, num_beams, temperature, num_visual_tokens], [chatbot, chat_state, img_list] ) clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, upload_button, chat_state, img_list], queue=False) demo.launch(enable_queue=True)