Spaces:
Running
Running
File size: 1,431 Bytes
cc1dbdd 5e53032 cc1dbdd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 |
from flask import Flask, render_template, request
from transformers import BlenderbotTokenizer, BlenderbotForConditionalGeneration
# Load the Blenderbot-400M-distill model
mname = "facebook/blenderbot-400M-distill"
model = BlenderbotForConditionalGeneration.from_pretrained(mname)
tokenizer = BlenderbotTokenizer.from_pretrained(mname)
app = Flask(__name__)
# Create an empty tuple to store the user_input data
history = ("")
ui_history = []
# Create a function to generate a response to a user"s input
def generate_response(history):
# Encode the user"s input
inputs = tokenizer(history, return_tensors="pt")
# Generate a response
reply_ids = model.generate(**inputs, max_length=60)
# Decode the response
return tokenizer.batch_decode(reply_ids, skip_special_tokens=True)[0]
@app.route("/", methods=["GET", "POST"])
def index():
if request.method == "POST":
global history
user_input = request.form["user_input"]
history += tokenizer.bos_token + user_input + tokenizer.eos_token + " "
response = generate_response(history)
history += tokenizer.bos_token + response + tokenizer.eos_token + " "
ui_history.append(user_input)
ui_history.append(response)
else:
user_input = ""
response = ""
return render_template("index.html", ui_history=ui_history)
if __name__ == "__main__":
app.run("0.0.0.0", port=80) |