File size: 21,895 Bytes
6680682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e3c6746
6680682
 
 
 
 
e3c6746
6680682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
from itertools import product
import random
from turtle import hideturtle
import requests
import json
import lxml.etree as ET

import gensim
import pandas as pd

import nltk
# from nltk.corpus import framenet as fn
# --- circumvent threading issues with FrameNet
fn_root = nltk.data.find("{}/{}".format("corpora", "framenet_v17"))
print(fn_root)
fn_files = ["frRelation.xml", "frameIndex.xml", "fulltextIndex.xml", "luIndex.xml", "semTypes.xml"]
fn = nltk.corpus.reader.framenet.FramenetCorpusReader(fn_root, fn_files)
# ---

import streamlit as st

from sociolome import lome_wrapper


def similarity(gensim_m, frame_1, frame_2):
    if f"fn_{frame_1}" not in gensim_m or f"fn_{frame_2}" not in gensim_m:
        return None
    return 1 - gensim_m.distance(f"fn_{frame_1}", f"fn_{frame_2}")


def rank(gensim_m, frame_1, frame_2):
    frame_1 = f"fn_{frame_1}"
    frame_2 = f"fn_{frame_2}"
    
    if frame_1 == frame_2:
        return 0

    for i, (word, _) in enumerate(gensim_m.most_similar(frame_1, topn=1200)):
        if word == frame_2:
            return i + 1
    return -1


def format_frame_description(frame_def_xml):
    frame_def_fmt = [frame_def_xml.text] if frame_def_xml.text else []
    for elem in frame_def_xml:
        if elem.tag == "ex":
            break
        elif elem.tag == "fen":
            frame_def_fmt.append(elem.text.upper())
        elif elem.text:
            frame_def_fmt.append(elem.text)
        if elem.tail:
            frame_def_fmt.append(elem.tail)
    return "".join(frame_def_fmt).replace("frames", "stories").replace("frame", "story")


def get_frame_definition(frame_info):
    try:
        # try extracting just the first sentence
        definition_first_sent = nltk.sent_tokenize(frame_info.definitionMarkup)[0] + "</def-root>"
        frame_def_xml = ET.fromstring(definition_first_sent)
    except ET.XMLSyntaxError:
        # otherwise, use the full definition
        frame_def_xml = ET.fromstring(frame_info.definitionMarkup)
    return format_frame_description(frame_def_xml)


def get_random_example(frame_info):
    exemplars = [
        {
            "text": exemplar.text, 
            "target_lu": lu_name, 
            "target_idx": list(exemplar["Target"][0]),
            "core_fes": {
                role: exemplar.text[start_idx:end_idx] 
                for role, start_idx, end_idx in exemplar.FE[0] 
                if role in [fe for fe, fe_info in frame_info.FE.items() if fe_info.coreType == "Core"]
                }
        } 
        for lu_name, lu_info in frame_info["lexUnit"].items()
        for exemplar in lu_info.exemplars if len(exemplar.text) > 30
    ]
    if exemplars:
        return random.choice(exemplars)
    return None

def make_hint(gensim_m, target, current_closest):

    if target == current_closest:
        return None

    most_similar = gensim_m.most_similar(f"fn_{target}", topn=1200)
    current_position = [word for word, _ in most_similar].index(f"fn_{current_closest}")

    while current_position > 0:
        next_closest, _ = most_similar[current_position - 1]
        info = fn.frame(next_closest.replace("fn_", ""))
        if len(info.lexUnit) > 10:
            exemplar = get_random_example(info)
            if exemplar:
                return next_closest, exemplar
        current_position -= 1
    
    return None


def get_typical_exemplar(frame_info):
    exemplars = [
        {
            "text": exemplar.text, 
            "target_lu": lu_name, 
            "target_idx": list(exemplar["Target"][0]),
            "core_fes": {
                role: exemplar.text[start_idx:end_idx] 
                for role, start_idx, end_idx in exemplar.FE[0] 
                if role in [fe for fe, fe_info in frame_info.FE.items() if fe_info.coreType == "Core"]
                }
        } 
        for lu_name, lu_info in frame_info["lexUnit"].items()
        for exemplar in lu_info.exemplars
    ]

    # try to find a "typical" exemplar --- typical -> as short as possible, as many FEs as possible
    exa_typicality_scores = [(exa, len(exa["text"]) - 25 * len(exa["core_fes"])) for exa in exemplars]
    if exa_typicality_scores:
        typical_exemplar = min(exa_typicality_scores, key=lambda t: t[1])[0]
    else:
        typical_exemplar = None
    return typical_exemplar


def find_all_inheriting_frames(frame_name):
    frame_info = fn.frame(frame_name)
    inheritance_rels = [rel for rel in frame_info.frameRelations if rel.type.name == "Inheritance" and rel.superFrame.name == frame_name]
    inheritors = [rel.subFrame.name for rel in inheritance_rels]
    for inh in inheritors:
        inheritors.extend(find_all_inheriting_frames(inh))
    return inheritors


def has_enough_lus(frame, n=10):
    return len(fn.frame(frame).lexUnit) > n


def choose_secret_frames():
    event_frames = [frm for frm in find_all_inheriting_frames("Event") if has_enough_lus(frm)]
    entity_frames = [frm for frm in find_all_inheriting_frames("Entity") if has_enough_lus(frm)]
    return random.choice(list(product(event_frames, entity_frames)))


def get_frame_info(frames):
    frames_and_info = []
    for evoked_frame in frames:
        try:
            frame_info = fn.frame(evoked_frame)
            typical_sentence = get_typical_exemplar(frame_info)
            frames_and_info.append((evoked_frame, frame_info, typical_sentence))
        except FileNotFoundError:
            continue
    return frames_and_info


def get_frame_feedback(frames_and_info, gensim_m, secret_event, secret_entity):
    frame_feedback = []
    for evoked_frame, frame_info, typical_sentence in frames_and_info:   
        lexunits = list(frame_info.lexUnit.keys())[:5]
        similarity_score_1 = similarity(gensim_m, secret_event, evoked_frame)
        similarity_rank_1 = rank(gensim_m, secret_event, evoked_frame)
        similarity_score_2 = similarity(gensim_m, secret_entity, evoked_frame)
        similarity_rank_2 = rank(gensim_m, secret_entity, evoked_frame)
        if typical_sentence:
            typical_sentence_txt = typical_sentence['text']
        else:
            typical_sentence_txt = None

        frame_feedback.append({
            "frame": evoked_frame, 
            "similarity_1": similarity_score_1 * 100 if similarity_score_1 else None,
            "rank_1": similarity_rank_1 if similarity_rank_1 != -1 else "far away",
            "similarity_2": similarity_score_2 * 100 if similarity_score_2 else None,
            "rank_2": similarity_rank_2 if similarity_rank_2 != -1 else "far away",
            "typical_words": lexunits,
            "typical_sentence": typical_sentence_txt
        })
    return frame_feedback


def run_game_cli(debug=True):

    secret_event, secret_entity = choose_secret_frames()
    
    if debug:
        print(f"Shhhhhh you're not supposed to know, but the secret frames are {secret_event} and {secret_entity}")
        print("--------\n\n\n\n")

    print("Welcome to FillmorLe!")
    print("Words are not just words: behind every word, a story is hidden that appears in our imagination when we hear the word.")
    print()
    print("In this game, your job is to activate TWO SECRET STORIES by writing sentences.")
    print("There will be new secret stories every day -- the first story is always about an EVENT (something that happens in the world) and the second one about an ENTITY (a thing or concept).")
    print("Every time you write a sentence, I will tell you which stories are hidden below the surface, and how close these stories are to the secret stories.")
    print("Once you write a sentence that has both of the secret stories in it, you win. Good luck and be creative!")

    gensim_m = gensim.models.word2vec.KeyedVectors.load_word2vec_format("data/frame_embeddings.w2v.txt")

    num_guesses = 0
    guesses_event = []
    guesses_entity = []

    while True:
        num_guesses += 1
        closest_to_event = sorted(guesses_event, key=lambda g: g[1], reverse=True)[:5]
        closest_to_entity = sorted(guesses_entity, key=lambda g: g[1], reverse=True)[:5]
        closest_to_event_txt = ", ".join([f"{frm.upper()} ({sim:.2f})" for frm, sim in closest_to_event])
        closest_to_entity_txt = ", ".join([f"{frm.upper()} ({sim:.2f})" for frm, sim in closest_to_entity])

        print()
        print(f"==== Guess #{num_guesses} ====")
        if secret_event in guesses_event:
            print("You already guessed SECRET STORY #1: ", secret_event.upper())
        elif closest_to_event:
            print(f"Best guesses (SECRET STORY #1):", closest_to_event_txt)
        
        if secret_entity in guesses_entity:
            print("You already guessed SECRET STORY #1: ", secret_entity.upper())
        elif closest_to_entity:
            print(f"Best guesses (SECRET STORY #2):", closest_to_entity_txt)
        
        sentence = input("Enter a sentence or type 'HINT' if you're stuck >>>> ").strip()
        
        if sentence == "HINT":
            hint_target = None
            while not hint_target:
                hint_choice = input("For which story do you want a hint? Type '1' or '2' >>>> ").strip()
                if hint_choice == "1":
                    hint_target = secret_event
                    hint_current = closest_to_event[0][0] if closest_to_event else "Event"
                elif hint_choice == "2":
                    hint_target = secret_entity
                    hint_current = closest_to_entity[0][0] if closest_to_entity else "Entity"
                else:
                    print("Please type '1' or '2'.")
            
            if hint_current == hint_target:
                print("You don't need a hint for this story! Maybe you want a hint for the other one?")
                continue

            hint = make_hint(gensim_m, hint_target, hint_current)
            if hint is None:
                print("Sorry, you're already too close to give you a hint!")
            else:
                _, hint_example = hint
                hint_tgt_idx = hint_example["target_idx"]
                hint_example_redacted = hint_example["text"][:hint_tgt_idx[0]] + "******" + hint_example["text"][hint_tgt_idx[1]:]
                print(f"Your hint sentence is: «{hint_example_redacted}»")
                print(f"PRO TIP 1: the '******' hide a secret word. Guess the word and you will find a story that takes your one step closer to find SECRET STORY #{hint_choice}")
                print(f"PRO TIP 2: if you don't get the hint, just ask for a new one! You can do this as often as you want.")
            print("\n\n")
            continue

        r = requests.get("http://127.0.0.1:9090/analyze", params={"text": sentence})
        lome_data = json.loads(r.text)
        frames = set()
        for token_items in lome_data["analyses"][0]["frame_list"]:
            for item in token_items:
                if item.startswith("T:"):
                    evoked_frame = item.split("@")[0].replace("T:", "")
                    frames.add(evoked_frame)

        frames_and_info = get_frame_info(frames)
        frame_feedback = get_frame_feedback(frames_and_info)

        for i, feedback in enumerate(frame_feedback):   

            print(f"STORY {i}: {feedback['frame'].upper()}")
            if feedback["typical_sentence"]:
                print(f"\ttypical context: «{feedback['typical_sentence']}»")
            print("\ttypical words:", ", ".join(feedback["typical_words"]), "...")
            if feedback["similarity_1"]:
                guesses_event.append((evoked_frame, feedback["similarity_1"]))
                guesses_entity.append((evoked_frame, feedback["similarity_2"]))
                print(f"\tsimilarity to SECRET STORY #1: {feedback['similarity_1']:.2f}")
                print(f"\tsimilarity to SECRET STORY #2: {feedback['similarity_2']:.2f}")
            else:
                print("similarity: unknown")
            print()

        if not frames_and_info:
            print("I don't know any of the stories in your sentence. Try entering another sentence.")

        elif secret_event in frames and secret_entity in frames:
            print(f"YOU WIN! You made a sentence with both of the SECRET STORIES: {secret_event.upper()} and {secret_entity.upper()}.\nYou won the game in {num_guesses} guesses, great job!")
            break

        elif secret_event in frames:
            print(f"Great, you guessed SECRET STORY #1! It was {secret_event.upper()}!")
            print("To win, make a sentence with this story and SECRET STORY #2 hidden in it.")

        elif secret_entity in frames:
            print(f"Great, you guessed SECRET STORY #2! It was {secret_entity.upper()}!")
            print("To win, make a sentence with this story and SECRET STORY #1 hidden in it.")


# dummy version
# def analyze_sentence(sentence):
#     return sentence.split()

def analyze_sentence(sentence): 
    lome_data = lome_wrapper.analyze(sentence)
    frames = set()
    for token_items in lome_data["analyses"][0]["frame_list"]:
        for item in token_items:
            if item.startswith("T:"):
                evoked_frame = item.split("@")[0].replace("T:", "")
                frames.add(evoked_frame)
    return frames



def make_frame_feedback_msg(frame_feedback):
    feedback_msg = []
    for i, feedback in enumerate(frame_feedback):   
        feedback_msg.append(f"* STORY {i}: *{feedback['frame'].upper()}*")
        feedback_msg.append("\t* typical words: *" + " ".join(feedback["typical_words"]) + "* ...")
        if feedback["typical_sentence"]:
            feedback_msg.append(f"\t* typical context: «{feedback['typical_sentence']}»")
        
        if feedback["similarity_1"]:
            feedback_msg.append(f"\t* similarity to SECRET STORY #1: {feedback['similarity_1']:.2f}")
            feedback_msg.append(f"\t* similarity to SECRET STORY #2: {feedback['similarity_2']:.2f}")
        else:
            feedback_msg.append(f"\t* similarity: unknown")
    return "\n".join(feedback_msg)


def format_hint_sentence(hint_example):
    hint_tgt_idx = hint_example["target_idx"]
    hint_example_redacted = hint_example["text"][:hint_tgt_idx[0]] + "******" + hint_example["text"][hint_tgt_idx[1]:]
    return hint_example_redacted.strip()


def play_turn():
    # remove text from input
    sentence = st.session_state["cur_sentence"]
    st.session_state["cur_sentence"] = ""

    # get previous game state
    game_state = st.session_state["game_state"]
    secret_event, secret_entity = game_state["secret_event"], game_state["secret_entity"]
    guesses_event, guesses_entity = game_state["guesses_event"], game_state["guesses_entity"]

    # reset hints
    st.session_state["hints"] = [None, None]

    # reveal correct frames
    if sentence.strip().lower() == "show me the frames":
        st.warning(f"The correct frames are: {secret_event.upper()} and {secret_entity.upper()}")

    # process hints
    elif sentence.strip() == "HINT":
        guesses_event = sorted(game_state["guesses_event"], key=lambda t: t[1], reverse=True)
        guesses_entity = sorted(game_state["guesses_entity"], key=lambda t: t[1], reverse=True)
        best_guess_event = guesses_event[0][0] if guesses_event else "Event"
        best_guess_entity = guesses_entity[0][0] if guesses_entity else "Entity"

        event_hint = make_hint(st.session_state["gensim_model"], secret_event, best_guess_event)
        entity_hint = make_hint(st.session_state["gensim_model"], secret_entity, best_guess_entity) 
        
        if event_hint:
            st.session_state["hints"][0] = format_hint_sentence(event_hint[1])
        if entity_hint:
            st.session_state["hints"][1] = format_hint_sentence(entity_hint[1])
            

    else:
        frames = analyze_sentence(sentence)
        frames_and_info = get_frame_info(frames)
        frame_feedback = get_frame_feedback(frames_and_info, st.session_state["gensim_model"], secret_event, secret_entity)

        # update game state post analysis
        game_state["num_guesses"] += 1
        for fdb in frame_feedback:
            if fdb["similarity_1"]:
                guesses_event.add((fdb["frame"], fdb["similarity_1"], fdb["rank_1"]))
                guesses_entity.add((fdb["frame"], fdb["similarity_2"], fdb["rank_2"]))
        
        st.session_state["frame_feedback"] = frame_feedback
        if secret_event in frames and secret_entity in frames:
            st.session_state["game_over"] = True
            st.session_state["guesses_to_win"] = game_state["num_guesses"]

def display_guess_status():
    game_state = st.session_state["game_state"]
    guesses_entity = sorted(game_state["guesses_entity"], key=lambda t: t[1], reverse=True)
    guesses_event = sorted(game_state["guesses_event"], key=lambda t: t[1], reverse=True)

    if guesses_event or guesses_entity:
        st.header("Best guesses")

    event_col, entity_col = st.columns(2)
    if guesses_event:
        with event_col:
            st.subheader("Event Mini-Story")
            st.table(pd.DataFrame(guesses_event, columns=["Story", "Similarity", "Steps To Go"]))
            if game_state["secret_event"] in [g for g, _, _ in guesses_event]:
                st.info("Great, you guessed the Event story! In order to win, make a sentence containing both the secret stories.")
    if guesses_entity:
        with entity_col:
            st.subheader("Thing Mini-Story")
            st.table(pd.DataFrame(guesses_entity, columns=["Story", "Similarity", "Steps To Go"]))
            if game_state["secret_entity"] in [g for g, _, _ in guesses_entity]:
                st.info("Great, you guessed the Thing story! In order to win, make a sentence containing both the secret stories.")


def format_feedback(frame_feedback):
    out = []
    for fdb in frame_feedback:
        out.append({
            "Story": fdb["frame"],
            "Similarity (Event)": f"{fdb['similarity_1']:.2f}",
            "Similarity (Thing)": f"{fdb['similarity_2']:.2f}",
            "Typical Context": fdb["typical_sentence"],
            "Typical Words": " ".join(fdb["typical_words"])
        })
    return out


def display_introduction():
    st.subheader("Why this game?")
    st.markdown(
    """
    Words are not just words: behind every word, a _mini-story_ (also known as "frame") is hidden 
    that appears in our imagination when we hear the word. For example, when we hear the word
    "talking" we can imagine a mini-story that involves several people who are interacting
    with each other. Or, if we hear the word "cookie", we might think of someone eating a cookie.
    """.strip())

    st.subheader("How does it work?")
    st.markdown(
    "* In this game, there are two secret mini-stories, and it's your job to figure out which ones!"
    "\n"
    "* The first mini-story is about an _Event_ (something that happens in the world, like a thunderstorm, "
    "people talking, someone eating pasta), and the other one is a _Thing_ (a concrete thing like a tree"
    "or something abstract like 'love')."
    "\n"
    "* How to guess the stories? Well, just type a sentence, and we'll tell you which mini-stories are "
    "hidden in the sentence. For each of the stories, we'll tell you how close they are to the secret ones."
    "\n"
    "* Once you type a sentence with both of the secret mini-stories, you win!"
    )



def display_hints():
    event_hint, entity_hint = st.session_state["hints"]
    if event_hint or entity_hint:
        st.header("Hints")
        st.info("So you need some help? Here you get your hint sentences! Guess the hidden word, use it in a sentence, and we'll help you get one step closer.")

    if event_hint:     
        st.markdown(f"**Event Hint**:\n>_{event_hint}_")
    if entity_hint:
        st.markdown(f"**Thing Hint**:\n>_{entity_hint}_")

def display_frame_feedback():
    frame_feedback = st.session_state["frame_feedback"]
    if frame_feedback:
        st.header("Feedback")
        st.text("Your sentence contains the following stories: ")
        feedback_df = format_feedback(frame_feedback)
        st.table(pd.DataFrame(feedback_df))


def run_game_st(debug=True):
    
    if not st.session_state.get("initialized", False):

        secret_event, secret_entity = choose_secret_frames()
        gensim_m = gensim.models.word2vec.KeyedVectors.load_word2vec_format("data/frame_embeddings.w2v.txt")

        game_state = {
            "secret_event": secret_event,
            "secret_entity": secret_entity,
            "num_guesses": 0,
            "guesses_event": set(),
            "guesses_entity": set(),
        }

        st.session_state["initialized"] = True
        st.session_state["show_introduction"] = False
        st.session_state["game_over"] = False
        st.session_state["guesses_to_win"] = -1
        st.session_state["game_state"] = game_state
        st.session_state["gensim_model"] = gensim_m
        st.session_state["frame_feedback"] = None
        st.session_state["hints"] = [None, None]

    else:
        gensim_m = st.session_state["gensim_model"]
        game_state = st.session_state["game_state"]

    secret_event, secret_entity = game_state["secret_event"], game_state["secret_entity"]

    header = st.container()
    with header:
        st.title("FillmorLe")
        st.checkbox("Show explanation?", key="show_introduction")
        if st.session_state["show_introduction"]:
            display_introduction()

        st.header(f"Guess #{st.session_state['game_state']['num_guesses'] + 1}")
        st.text_input("Enter a sentence or type 'HINT' if you're stuck", key="cur_sentence", on_change=play_turn)

        if st.session_state["game_over"]:
            st.success(f"You won in {st.session_state['guesses_to_win']}!")
        
        display_hints()
        display_frame_feedback()
        display_guess_status()


if __name__ == "__main__":
    run_game_st()