Spaces:
Build error
Build error
File size: 21,895 Bytes
6680682 e3c6746 6680682 e3c6746 6680682 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 |
from itertools import product
import random
from turtle import hideturtle
import requests
import json
import lxml.etree as ET
import gensim
import pandas as pd
import nltk
# from nltk.corpus import framenet as fn
# --- circumvent threading issues with FrameNet
fn_root = nltk.data.find("{}/{}".format("corpora", "framenet_v17"))
print(fn_root)
fn_files = ["frRelation.xml", "frameIndex.xml", "fulltextIndex.xml", "luIndex.xml", "semTypes.xml"]
fn = nltk.corpus.reader.framenet.FramenetCorpusReader(fn_root, fn_files)
# ---
import streamlit as st
from sociolome import lome_wrapper
def similarity(gensim_m, frame_1, frame_2):
if f"fn_{frame_1}" not in gensim_m or f"fn_{frame_2}" not in gensim_m:
return None
return 1 - gensim_m.distance(f"fn_{frame_1}", f"fn_{frame_2}")
def rank(gensim_m, frame_1, frame_2):
frame_1 = f"fn_{frame_1}"
frame_2 = f"fn_{frame_2}"
if frame_1 == frame_2:
return 0
for i, (word, _) in enumerate(gensim_m.most_similar(frame_1, topn=1200)):
if word == frame_2:
return i + 1
return -1
def format_frame_description(frame_def_xml):
frame_def_fmt = [frame_def_xml.text] if frame_def_xml.text else []
for elem in frame_def_xml:
if elem.tag == "ex":
break
elif elem.tag == "fen":
frame_def_fmt.append(elem.text.upper())
elif elem.text:
frame_def_fmt.append(elem.text)
if elem.tail:
frame_def_fmt.append(elem.tail)
return "".join(frame_def_fmt).replace("frames", "stories").replace("frame", "story")
def get_frame_definition(frame_info):
try:
# try extracting just the first sentence
definition_first_sent = nltk.sent_tokenize(frame_info.definitionMarkup)[0] + "</def-root>"
frame_def_xml = ET.fromstring(definition_first_sent)
except ET.XMLSyntaxError:
# otherwise, use the full definition
frame_def_xml = ET.fromstring(frame_info.definitionMarkup)
return format_frame_description(frame_def_xml)
def get_random_example(frame_info):
exemplars = [
{
"text": exemplar.text,
"target_lu": lu_name,
"target_idx": list(exemplar["Target"][0]),
"core_fes": {
role: exemplar.text[start_idx:end_idx]
for role, start_idx, end_idx in exemplar.FE[0]
if role in [fe for fe, fe_info in frame_info.FE.items() if fe_info.coreType == "Core"]
}
}
for lu_name, lu_info in frame_info["lexUnit"].items()
for exemplar in lu_info.exemplars if len(exemplar.text) > 30
]
if exemplars:
return random.choice(exemplars)
return None
def make_hint(gensim_m, target, current_closest):
if target == current_closest:
return None
most_similar = gensim_m.most_similar(f"fn_{target}", topn=1200)
current_position = [word for word, _ in most_similar].index(f"fn_{current_closest}")
while current_position > 0:
next_closest, _ = most_similar[current_position - 1]
info = fn.frame(next_closest.replace("fn_", ""))
if len(info.lexUnit) > 10:
exemplar = get_random_example(info)
if exemplar:
return next_closest, exemplar
current_position -= 1
return None
def get_typical_exemplar(frame_info):
exemplars = [
{
"text": exemplar.text,
"target_lu": lu_name,
"target_idx": list(exemplar["Target"][0]),
"core_fes": {
role: exemplar.text[start_idx:end_idx]
for role, start_idx, end_idx in exemplar.FE[0]
if role in [fe for fe, fe_info in frame_info.FE.items() if fe_info.coreType == "Core"]
}
}
for lu_name, lu_info in frame_info["lexUnit"].items()
for exemplar in lu_info.exemplars
]
# try to find a "typical" exemplar --- typical -> as short as possible, as many FEs as possible
exa_typicality_scores = [(exa, len(exa["text"]) - 25 * len(exa["core_fes"])) for exa in exemplars]
if exa_typicality_scores:
typical_exemplar = min(exa_typicality_scores, key=lambda t: t[1])[0]
else:
typical_exemplar = None
return typical_exemplar
def find_all_inheriting_frames(frame_name):
frame_info = fn.frame(frame_name)
inheritance_rels = [rel for rel in frame_info.frameRelations if rel.type.name == "Inheritance" and rel.superFrame.name == frame_name]
inheritors = [rel.subFrame.name for rel in inheritance_rels]
for inh in inheritors:
inheritors.extend(find_all_inheriting_frames(inh))
return inheritors
def has_enough_lus(frame, n=10):
return len(fn.frame(frame).lexUnit) > n
def choose_secret_frames():
event_frames = [frm for frm in find_all_inheriting_frames("Event") if has_enough_lus(frm)]
entity_frames = [frm for frm in find_all_inheriting_frames("Entity") if has_enough_lus(frm)]
return random.choice(list(product(event_frames, entity_frames)))
def get_frame_info(frames):
frames_and_info = []
for evoked_frame in frames:
try:
frame_info = fn.frame(evoked_frame)
typical_sentence = get_typical_exemplar(frame_info)
frames_and_info.append((evoked_frame, frame_info, typical_sentence))
except FileNotFoundError:
continue
return frames_and_info
def get_frame_feedback(frames_and_info, gensim_m, secret_event, secret_entity):
frame_feedback = []
for evoked_frame, frame_info, typical_sentence in frames_and_info:
lexunits = list(frame_info.lexUnit.keys())[:5]
similarity_score_1 = similarity(gensim_m, secret_event, evoked_frame)
similarity_rank_1 = rank(gensim_m, secret_event, evoked_frame)
similarity_score_2 = similarity(gensim_m, secret_entity, evoked_frame)
similarity_rank_2 = rank(gensim_m, secret_entity, evoked_frame)
if typical_sentence:
typical_sentence_txt = typical_sentence['text']
else:
typical_sentence_txt = None
frame_feedback.append({
"frame": evoked_frame,
"similarity_1": similarity_score_1 * 100 if similarity_score_1 else None,
"rank_1": similarity_rank_1 if similarity_rank_1 != -1 else "far away",
"similarity_2": similarity_score_2 * 100 if similarity_score_2 else None,
"rank_2": similarity_rank_2 if similarity_rank_2 != -1 else "far away",
"typical_words": lexunits,
"typical_sentence": typical_sentence_txt
})
return frame_feedback
def run_game_cli(debug=True):
secret_event, secret_entity = choose_secret_frames()
if debug:
print(f"Shhhhhh you're not supposed to know, but the secret frames are {secret_event} and {secret_entity}")
print("--------\n\n\n\n")
print("Welcome to FillmorLe!")
print("Words are not just words: behind every word, a story is hidden that appears in our imagination when we hear the word.")
print()
print("In this game, your job is to activate TWO SECRET STORIES by writing sentences.")
print("There will be new secret stories every day -- the first story is always about an EVENT (something that happens in the world) and the second one about an ENTITY (a thing or concept).")
print("Every time you write a sentence, I will tell you which stories are hidden below the surface, and how close these stories are to the secret stories.")
print("Once you write a sentence that has both of the secret stories in it, you win. Good luck and be creative!")
gensim_m = gensim.models.word2vec.KeyedVectors.load_word2vec_format("data/frame_embeddings.w2v.txt")
num_guesses = 0
guesses_event = []
guesses_entity = []
while True:
num_guesses += 1
closest_to_event = sorted(guesses_event, key=lambda g: g[1], reverse=True)[:5]
closest_to_entity = sorted(guesses_entity, key=lambda g: g[1], reverse=True)[:5]
closest_to_event_txt = ", ".join([f"{frm.upper()} ({sim:.2f})" for frm, sim in closest_to_event])
closest_to_entity_txt = ", ".join([f"{frm.upper()} ({sim:.2f})" for frm, sim in closest_to_entity])
print()
print(f"==== Guess #{num_guesses} ====")
if secret_event in guesses_event:
print("You already guessed SECRET STORY #1: ", secret_event.upper())
elif closest_to_event:
print(f"Best guesses (SECRET STORY #1):", closest_to_event_txt)
if secret_entity in guesses_entity:
print("You already guessed SECRET STORY #1: ", secret_entity.upper())
elif closest_to_entity:
print(f"Best guesses (SECRET STORY #2):", closest_to_entity_txt)
sentence = input("Enter a sentence or type 'HINT' if you're stuck >>>> ").strip()
if sentence == "HINT":
hint_target = None
while not hint_target:
hint_choice = input("For which story do you want a hint? Type '1' or '2' >>>> ").strip()
if hint_choice == "1":
hint_target = secret_event
hint_current = closest_to_event[0][0] if closest_to_event else "Event"
elif hint_choice == "2":
hint_target = secret_entity
hint_current = closest_to_entity[0][0] if closest_to_entity else "Entity"
else:
print("Please type '1' or '2'.")
if hint_current == hint_target:
print("You don't need a hint for this story! Maybe you want a hint for the other one?")
continue
hint = make_hint(gensim_m, hint_target, hint_current)
if hint is None:
print("Sorry, you're already too close to give you a hint!")
else:
_, hint_example = hint
hint_tgt_idx = hint_example["target_idx"]
hint_example_redacted = hint_example["text"][:hint_tgt_idx[0]] + "******" + hint_example["text"][hint_tgt_idx[1]:]
print(f"Your hint sentence is: «{hint_example_redacted}»")
print(f"PRO TIP 1: the '******' hide a secret word. Guess the word and you will find a story that takes your one step closer to find SECRET STORY #{hint_choice}")
print(f"PRO TIP 2: if you don't get the hint, just ask for a new one! You can do this as often as you want.")
print("\n\n")
continue
r = requests.get("http://127.0.0.1:9090/analyze", params={"text": sentence})
lome_data = json.loads(r.text)
frames = set()
for token_items in lome_data["analyses"][0]["frame_list"]:
for item in token_items:
if item.startswith("T:"):
evoked_frame = item.split("@")[0].replace("T:", "")
frames.add(evoked_frame)
frames_and_info = get_frame_info(frames)
frame_feedback = get_frame_feedback(frames_and_info)
for i, feedback in enumerate(frame_feedback):
print(f"STORY {i}: {feedback['frame'].upper()}")
if feedback["typical_sentence"]:
print(f"\ttypical context: «{feedback['typical_sentence']}»")
print("\ttypical words:", ", ".join(feedback["typical_words"]), "...")
if feedback["similarity_1"]:
guesses_event.append((evoked_frame, feedback["similarity_1"]))
guesses_entity.append((evoked_frame, feedback["similarity_2"]))
print(f"\tsimilarity to SECRET STORY #1: {feedback['similarity_1']:.2f}")
print(f"\tsimilarity to SECRET STORY #2: {feedback['similarity_2']:.2f}")
else:
print("similarity: unknown")
print()
if not frames_and_info:
print("I don't know any of the stories in your sentence. Try entering another sentence.")
elif secret_event in frames and secret_entity in frames:
print(f"YOU WIN! You made a sentence with both of the SECRET STORIES: {secret_event.upper()} and {secret_entity.upper()}.\nYou won the game in {num_guesses} guesses, great job!")
break
elif secret_event in frames:
print(f"Great, you guessed SECRET STORY #1! It was {secret_event.upper()}!")
print("To win, make a sentence with this story and SECRET STORY #2 hidden in it.")
elif secret_entity in frames:
print(f"Great, you guessed SECRET STORY #2! It was {secret_entity.upper()}!")
print("To win, make a sentence with this story and SECRET STORY #1 hidden in it.")
# dummy version
# def analyze_sentence(sentence):
# return sentence.split()
def analyze_sentence(sentence):
lome_data = lome_wrapper.analyze(sentence)
frames = set()
for token_items in lome_data["analyses"][0]["frame_list"]:
for item in token_items:
if item.startswith("T:"):
evoked_frame = item.split("@")[0].replace("T:", "")
frames.add(evoked_frame)
return frames
def make_frame_feedback_msg(frame_feedback):
feedback_msg = []
for i, feedback in enumerate(frame_feedback):
feedback_msg.append(f"* STORY {i}: *{feedback['frame'].upper()}*")
feedback_msg.append("\t* typical words: *" + " ".join(feedback["typical_words"]) + "* ...")
if feedback["typical_sentence"]:
feedback_msg.append(f"\t* typical context: «{feedback['typical_sentence']}»")
if feedback["similarity_1"]:
feedback_msg.append(f"\t* similarity to SECRET STORY #1: {feedback['similarity_1']:.2f}")
feedback_msg.append(f"\t* similarity to SECRET STORY #2: {feedback['similarity_2']:.2f}")
else:
feedback_msg.append(f"\t* similarity: unknown")
return "\n".join(feedback_msg)
def format_hint_sentence(hint_example):
hint_tgt_idx = hint_example["target_idx"]
hint_example_redacted = hint_example["text"][:hint_tgt_idx[0]] + "******" + hint_example["text"][hint_tgt_idx[1]:]
return hint_example_redacted.strip()
def play_turn():
# remove text from input
sentence = st.session_state["cur_sentence"]
st.session_state["cur_sentence"] = ""
# get previous game state
game_state = st.session_state["game_state"]
secret_event, secret_entity = game_state["secret_event"], game_state["secret_entity"]
guesses_event, guesses_entity = game_state["guesses_event"], game_state["guesses_entity"]
# reset hints
st.session_state["hints"] = [None, None]
# reveal correct frames
if sentence.strip().lower() == "show me the frames":
st.warning(f"The correct frames are: {secret_event.upper()} and {secret_entity.upper()}")
# process hints
elif sentence.strip() == "HINT":
guesses_event = sorted(game_state["guesses_event"], key=lambda t: t[1], reverse=True)
guesses_entity = sorted(game_state["guesses_entity"], key=lambda t: t[1], reverse=True)
best_guess_event = guesses_event[0][0] if guesses_event else "Event"
best_guess_entity = guesses_entity[0][0] if guesses_entity else "Entity"
event_hint = make_hint(st.session_state["gensim_model"], secret_event, best_guess_event)
entity_hint = make_hint(st.session_state["gensim_model"], secret_entity, best_guess_entity)
if event_hint:
st.session_state["hints"][0] = format_hint_sentence(event_hint[1])
if entity_hint:
st.session_state["hints"][1] = format_hint_sentence(entity_hint[1])
else:
frames = analyze_sentence(sentence)
frames_and_info = get_frame_info(frames)
frame_feedback = get_frame_feedback(frames_and_info, st.session_state["gensim_model"], secret_event, secret_entity)
# update game state post analysis
game_state["num_guesses"] += 1
for fdb in frame_feedback:
if fdb["similarity_1"]:
guesses_event.add((fdb["frame"], fdb["similarity_1"], fdb["rank_1"]))
guesses_entity.add((fdb["frame"], fdb["similarity_2"], fdb["rank_2"]))
st.session_state["frame_feedback"] = frame_feedback
if secret_event in frames and secret_entity in frames:
st.session_state["game_over"] = True
st.session_state["guesses_to_win"] = game_state["num_guesses"]
def display_guess_status():
game_state = st.session_state["game_state"]
guesses_entity = sorted(game_state["guesses_entity"], key=lambda t: t[1], reverse=True)
guesses_event = sorted(game_state["guesses_event"], key=lambda t: t[1], reverse=True)
if guesses_event or guesses_entity:
st.header("Best guesses")
event_col, entity_col = st.columns(2)
if guesses_event:
with event_col:
st.subheader("Event Mini-Story")
st.table(pd.DataFrame(guesses_event, columns=["Story", "Similarity", "Steps To Go"]))
if game_state["secret_event"] in [g for g, _, _ in guesses_event]:
st.info("Great, you guessed the Event story! In order to win, make a sentence containing both the secret stories.")
if guesses_entity:
with entity_col:
st.subheader("Thing Mini-Story")
st.table(pd.DataFrame(guesses_entity, columns=["Story", "Similarity", "Steps To Go"]))
if game_state["secret_entity"] in [g for g, _, _ in guesses_entity]:
st.info("Great, you guessed the Thing story! In order to win, make a sentence containing both the secret stories.")
def format_feedback(frame_feedback):
out = []
for fdb in frame_feedback:
out.append({
"Story": fdb["frame"],
"Similarity (Event)": f"{fdb['similarity_1']:.2f}",
"Similarity (Thing)": f"{fdb['similarity_2']:.2f}",
"Typical Context": fdb["typical_sentence"],
"Typical Words": " ".join(fdb["typical_words"])
})
return out
def display_introduction():
st.subheader("Why this game?")
st.markdown(
"""
Words are not just words: behind every word, a _mini-story_ (also known as "frame") is hidden
that appears in our imagination when we hear the word. For example, when we hear the word
"talking" we can imagine a mini-story that involves several people who are interacting
with each other. Or, if we hear the word "cookie", we might think of someone eating a cookie.
""".strip())
st.subheader("How does it work?")
st.markdown(
"* In this game, there are two secret mini-stories, and it's your job to figure out which ones!"
"\n"
"* The first mini-story is about an _Event_ (something that happens in the world, like a thunderstorm, "
"people talking, someone eating pasta), and the other one is a _Thing_ (a concrete thing like a tree"
"or something abstract like 'love')."
"\n"
"* How to guess the stories? Well, just type a sentence, and we'll tell you which mini-stories are "
"hidden in the sentence. For each of the stories, we'll tell you how close they are to the secret ones."
"\n"
"* Once you type a sentence with both of the secret mini-stories, you win!"
)
def display_hints():
event_hint, entity_hint = st.session_state["hints"]
if event_hint or entity_hint:
st.header("Hints")
st.info("So you need some help? Here you get your hint sentences! Guess the hidden word, use it in a sentence, and we'll help you get one step closer.")
if event_hint:
st.markdown(f"**Event Hint**:\n>_{event_hint}_")
if entity_hint:
st.markdown(f"**Thing Hint**:\n>_{entity_hint}_")
def display_frame_feedback():
frame_feedback = st.session_state["frame_feedback"]
if frame_feedback:
st.header("Feedback")
st.text("Your sentence contains the following stories: ")
feedback_df = format_feedback(frame_feedback)
st.table(pd.DataFrame(feedback_df))
def run_game_st(debug=True):
if not st.session_state.get("initialized", False):
secret_event, secret_entity = choose_secret_frames()
gensim_m = gensim.models.word2vec.KeyedVectors.load_word2vec_format("data/frame_embeddings.w2v.txt")
game_state = {
"secret_event": secret_event,
"secret_entity": secret_entity,
"num_guesses": 0,
"guesses_event": set(),
"guesses_entity": set(),
}
st.session_state["initialized"] = True
st.session_state["show_introduction"] = False
st.session_state["game_over"] = False
st.session_state["guesses_to_win"] = -1
st.session_state["game_state"] = game_state
st.session_state["gensim_model"] = gensim_m
st.session_state["frame_feedback"] = None
st.session_state["hints"] = [None, None]
else:
gensim_m = st.session_state["gensim_model"]
game_state = st.session_state["game_state"]
secret_event, secret_entity = game_state["secret_event"], game_state["secret_entity"]
header = st.container()
with header:
st.title("FillmorLe")
st.checkbox("Show explanation?", key="show_introduction")
if st.session_state["show_introduction"]:
display_introduction()
st.header(f"Guess #{st.session_state['game_state']['num_guesses'] + 1}")
st.text_input("Enter a sentence or type 'HINT' if you're stuck", key="cur_sentence", on_change=play_turn)
if st.session_state["game_over"]:
st.success(f"You won in {st.session_state['guesses_to_win']}!")
display_hints()
display_frame_feedback()
display_guess_status()
if __name__ == "__main__":
run_game_st() |