Spaces:
Build error
Build error
File size: 10,926 Bytes
6680682 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 |
import json
from typing import List, Tuple
import pandas as pd
from sftp import SpanPredictor
def main():
# data_file = "/home/p289731/cloned/lome/preproc/evalita_jsonl/evalita_dev.jsonl"
# data_file = "/home/p289731/cloned/lome/preproc/svm_challenge.jsonl"
data_file = "/home/p289731/cloned/lome/preproc/evalita_jsonl/evalita_test.jsonl"
models = [
(
"lome-en",
"/data/p289731/cloned/lome-models/models/spanfinder/model.mod.tar.gz",
),
(
"lome-it-best",
"/scratch/p289731/lome-training-files/train-evalita-plus-fn-vanilla/model.tar.gz",
),
# (
# "lome-it-freeze",
# "/data/p289731/cloned/lome/train-evalita-plus-fn-freeze/model.tar.gz",
# ),
# (
# "lome-it-mono",
# "/data/p289731/cloned/lome/train-evalita-it_mono/model.tar.gz",
# ),
]
for (model_name, model_path) in models:
print("testing model: ", model_name)
predictor = SpanPredictor.from_path(model_path)
print("=== FD (run 1) ===")
eval_frame_detection(data_file, predictor, model_name=model_name)
for run in [1, 2]:
print(f"=== BD (run {run}) ===")
eval_boundary_detection(data_file, predictor, run=run)
for run in [1, 2, 3]:
print(f"=== AC (run {run}) ===")
eval_argument_classification(data_file, predictor, run=run)
def predict_frame(
predictor: SpanPredictor, tokens: List[str], predicate_span: Tuple[int, int]
):
_, labels, _ = predictor.force_decode(tokens, child_spans=[predicate_span])
return labels[0]
def eval_frame_detection(data_file, predictor, verbose=False, model_name="_"):
true_pos = 0
false_pos = 0
out = []
with open(data_file, encoding="utf-8") as f:
for sent_id, sent in enumerate(f):
sent_data = json.loads(sent)
tokens = sent_data["tokens"]
annotation = sent_data["annotations"][0]
predicate_span = tuple(annotation["span"])
predicate = tokens[predicate_span[0] : predicate_span[1] + 1]
frame_gold = annotation["label"]
frame_pred = predict_frame(predictor, tokens, predicate_span)
if frame_pred == frame_gold:
true_pos += 1
else:
false_pos += 1
out.append({
"sentence": " ".join(tokens),
"predicate": predicate,
"frame_gold": frame_gold,
"frame_pred": frame_pred
})
if verbose:
print(f"Sentence #{sent_id:03}: {' '.join(tokens)}")
print(f"\tpredicate: {predicate}")
print(f"\t gold: {frame_gold}")
print(f"\tpredicted: {frame_pred}")
print()
acc_score = true_pos / (true_pos + false_pos)
print("ACC =", acc_score)
data_sect = "rai" if "svm_challenge" in data_file else "dev" if "dev" in data_file else "test"
df_out = pd.DataFrame(out)
df_out.to_csv(f"frame_prediction_output_{model_name}_{data_sect}.csv")
def predict_boundaries(predictor: SpanPredictor, tokens, predicate_span, frame):
boundaries, labels, _ = predictor.force_decode(
tokens, parent_span=predicate_span, parent_label=frame
)
out = []
for bnd, lab in zip(boundaries, labels):
bnd = tuple(bnd)
if bnd == predicate_span and lab == "Target":
continue
out.append(bnd)
return out
def get_gold_boundaries(annotation, predicate_span):
return {
tuple(c["span"])
for c in annotation["children"]
if not (tuple(c["span"]) == predicate_span and c["label"] == "Target")
}
def eval_boundary_detection(data_file, predictor, run=1, verbose=False):
assert run in [1, 2]
true_pos = 0
false_pos = 0
false_neg = 0
true_pos_tok = 0
false_pos_tok = 0
false_neg_tok = 0
with open(data_file, encoding="utf-8") as f:
for sent_id, sent in enumerate(f):
sent_data = json.loads(sent)
tokens = sent_data["tokens"]
annotation = sent_data["annotations"][0]
predicate_span = tuple(annotation["span"])
predicate = tokens[predicate_span[0] : predicate_span[1] + 1]
if run == 1:
frame = predict_frame(predictor, tokens, predicate_span)
else:
frame = annotation["label"]
boundaries_gold = get_gold_boundaries(annotation, predicate_span)
boundaries_pred = set(
predict_boundaries(predictor, tokens, predicate_span, frame)
)
sent_true_pos = len(boundaries_gold & boundaries_pred)
sent_false_pos = len(boundaries_pred - boundaries_gold)
sent_false_neg = len(boundaries_gold - boundaries_pred)
true_pos += sent_true_pos
false_pos += sent_false_pos
false_neg += sent_false_neg
boundary_toks_gold = {
tok_idx
for (start, stop) in boundaries_gold
for tok_idx in range(start, stop + 1)
}
boundary_toks_pred = {
tok_idx
for (start, stop) in boundaries_pred
for tok_idx in range(start, stop + 1)
}
sent_tok_true_pos = len(boundary_toks_gold & boundary_toks_pred)
sent_tok_false_pos = len(boundary_toks_pred - boundary_toks_gold)
sent_tok_false_neg = len(boundary_toks_gold - boundary_toks_pred)
true_pos_tok += sent_tok_true_pos
false_pos_tok += sent_tok_false_pos
false_neg_tok += sent_tok_false_neg
if verbose:
print(f"Sentence #{sent_id:03}: {' '.join(tokens)}")
print(f"\tpredicate: {predicate}")
print(f"\t frame: {frame}")
print(f"\t gold: {boundaries_gold}")
print(f"\tpredicted: {boundaries_pred}")
print(f"\ttp={sent_true_pos}\tfp={sent_false_pos}\tfn={sent_false_neg}")
print(
f"\ttp_t={sent_tok_true_pos}\tfp_t={sent_tok_false_pos}\tfn_t={sent_tok_false_neg}"
)
print()
prec = true_pos / (true_pos + false_pos)
rec = true_pos / (true_pos + false_neg)
f1_score = 2 * ((prec * rec) / (prec + rec))
print(f"P/R/F=\n{prec}\t{rec}\t{f1_score}")
tok_prec = true_pos_tok / (true_pos_tok + false_pos_tok)
tok_rec = true_pos_tok / (true_pos_tok + false_neg_tok)
tok_f1 = 2 * ((tok_prec * tok_rec) / (tok_prec + tok_rec))
print(f"Pt/Rt/Ft=\n{tok_prec}\t{tok_rec}\t{tok_f1}")
def predict_arguments(
predictor: SpanPredictor, tokens, predicate_span, frame, boundaries
):
boundaries = list(sorted(boundaries, key=lambda t: t[0]))
_, labels, _ = predictor.force_decode(
tokens, parent_span=predicate_span, parent_label=frame, child_spans=boundaries
)
out = []
for bnd, lab in zip(boundaries, labels):
if bnd == predicate_span and lab == "Target":
continue
out.append((bnd, lab))
return out
def eval_argument_classification(data_file, predictor, run=1, verbose=False):
assert run in [1, 2, 3]
true_pos = 0
false_pos = 0
false_neg = 0
true_pos_tok = 0
false_pos_tok = 0
false_neg_tok = 0
with open(data_file, encoding="utf-8") as f:
for sent_id, sent in enumerate(f):
sent_data = json.loads(sent)
tokens = sent_data["tokens"]
annotation = sent_data["annotations"][0]
predicate_span = tuple(annotation["span"])
predicate = tokens[predicate_span[0] : predicate_span[1] + 1]
# gold or predicted frames?
if run == 1:
frame = predict_frame(predictor, tokens, predicate_span)
else:
frame = annotation["label"]
# gold or predicted argument boundaries?
if run in [1, 2]:
boundaries = set(
predict_boundaries(predictor, tokens, predicate_span, frame)
)
else:
boundaries = get_gold_boundaries(annotation, predicate_span)
pred_arguments = predict_arguments(
predictor, tokens, predicate_span, frame, boundaries
)
gold_arguments = {
(tuple(c["span"]), c["label"])
for c in annotation["children"]
if not (tuple(c["span"]) == predicate_span and c["label"] == "Target")
}
if verbose:
print(f"Sentence #{sent_id:03}: {' '.join(tokens)}")
print(f"\tpredicate: {predicate}")
print(f"\t frame: {frame}")
print(f"\t gold: {gold_arguments}")
print(f"\tpredicted: {pred_arguments}")
print()
# -- full spans version
for g_bnd, g_label in gold_arguments:
# true positive: found the span and labeled it correctly
if (g_bnd, g_label) in pred_arguments:
true_pos += 1
# false negative: missed this argument
else:
false_neg += 1
for p_bnd, p_label in pred_arguments:
# all predictions that are not true positives are false positives
if (p_bnd, p_label) not in gold_arguments:
false_pos += 1
# -- token based
tok_gold_labels = {
(token, label)
for ((bnd_start, bnd_end), label) in gold_arguments
for token in range(bnd_start, bnd_end + 1)
}
tok_pred_labels = {
(token, label)
for ((bnd_start, bnd_end), label) in pred_arguments
for token in range(bnd_start, bnd_end + 1)
}
for g_tok, g_tok_label in tok_gold_labels:
if (g_tok, g_tok_label) in tok_pred_labels:
true_pos_tok += 1
else:
false_neg_tok += 1
for p_tok, p_tok_label in tok_pred_labels:
if (p_tok, p_tok_label) not in tok_gold_labels:
false_pos_tok += 1
prec = true_pos / (true_pos + false_pos)
rec = true_pos / (true_pos + false_neg)
f1_score = 2 * ((prec * rec) / (prec + rec))
print(f"P/R/F=\n{prec}\t{rec}\t{f1_score}")
tok_prec = true_pos_tok / (true_pos_tok + false_pos_tok)
tok_rec = true_pos_tok / (true_pos_tok + false_neg_tok)
tok_f1 = 2 * ((tok_prec * tok_rec) / (tok_prec + tok_rec))
print(f"Pt/Rt/Ft=\n{tok_prec}\t{tok_rec}\t{tok_f1}")
if __name__ == "__main__":
main()
|