File size: 9,156 Bytes
6680682
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
from typing import *

import torch
from allennlp.data.dataset_readers.dataset_utils.span_utils import bio_tags_to_spans
from allennlp.modules.seq2seq_encoders import Seq2SeqEncoder
from allennlp.modules.span_extractors import SpanExtractor
from allennlp.training.metrics import FBetaMeasure

from ..smooth_crf import SmoothCRF
from .span_finder import SpanFinder
from ...utils import num2mask, mask2idx, BIO


@SpanFinder.register("bio")
class BIOSpanFinder(SpanFinder):
    """
    Train BIO representations for span finding.
    """
    def __init__(
            self,
            bio_encoder: Seq2SeqEncoder,
            label_emb: torch.nn.Embedding,
            no_label: bool = True,
    ):
        super().__init__(no_label)
        self.bio_encoder = bio_encoder
        self.label_emb = label_emb

        self.classifier = torch.nn.Linear(bio_encoder.get_output_dim(), 3)
        self.crf = SmoothCRF(3)

        self.fb_measure = FBetaMeasure(1., 'micro', [BIO.index('B'), BIO.index('I')])

    def forward(
            self,
            token_vec: torch.Tensor,
            token_mask: torch.Tensor,
            span_vec: torch.Tensor,
            span_mask: Optional[torch.Tensor] = None,  # Do not need to provide
            span_labels: Optional[torch.Tensor] = None,  # Do not need to provide
            parent_indices: Optional[torch.Tensor] = None,  # Do not need to provide
            parent_mask: Optional[torch.Tensor] = None,
            bio_seqs: Optional[torch.Tensor] = None,
            prediction: bool = False,
            **extra
    ) -> Dict[str, torch.Tensor]:
        """
        See doc of SpanFinder.
        Possible extra variables:
            smoothing_factor
        :return:
            - loss
            - prediction
        """
        ret = dict()
        is_soft = span_labels.dtype != torch.int64

        distinct_parent_indices, num_parents = mask2idx(parent_mask)
        n_batch, n_parent = distinct_parent_indices.shape
        n_token = token_vec.shape[1]
        # Shape [batch, parent, token_dim]
        parent_span_features = span_vec.gather(
            1, distinct_parent_indices.unsqueeze(2).expand(-1, -1, span_vec.shape[2])
        )
        label_features = span_labels @ self.label_emb.weight if is_soft else self.label_emb(span_labels)
        if self._no_label:
            label_features = label_features.zero_()
        # Shape [batch, span, label_dim]
        parent_label_features = label_features.gather(
            1, distinct_parent_indices.unsqueeze(2).expand(-1, -1, label_features.shape[2])
        )
        # Shape [batch, parent, token, token_dim*2]
        encoder_inputs = torch.cat([
            parent_span_features.unsqueeze(2).expand(-1, -1, n_token, -1),
            token_vec.unsqueeze(1).expand(-1, n_parent, -1, -1),
            parent_label_features.unsqueeze(2).expand(-1, -1, n_token, -1),
        ], dim=3)
        encoder_inputs = encoder_inputs.reshape(n_batch * n_parent, n_token, -1)

        # Shape [batch, parent]. Considers batches may have fewer seqs.
        seq_mask = num2mask(num_parents)
        # Shape [batch, parent, token]. Also considers batches may have fewer tokens.
        token_mask = seq_mask.unsqueeze(2).expand(-1, -1, n_token) & token_mask.unsqueeze(1).expand(-1, n_parent, -1)

        class_in = self.bio_encoder(encoder_inputs, token_mask.flatten(0, 1))
        class_out = self.classifier(class_in).reshape(n_batch, n_parent, n_token, 3)

        if not prediction:
            # For training
            # We use `seq_mask` here because seq with length 0 is not acceptable.
            ret['loss'] = -self.crf(class_out[seq_mask], bio_seqs[seq_mask], token_mask[seq_mask])
            self.fb_measure(class_out[seq_mask], bio_seqs[seq_mask].max(2).indices, token_mask[seq_mask])
        else:
            # For prediction
            features_for_decode = class_out.clone().detach()
            decoded = self.crf.viterbi_tags(features_for_decode.flatten(0, 1), token_mask.flatten(0, 1))
            pred_tag = torch.tensor(
                [path + [BIO.index('O')] * (n_token - len(path)) for path, _ in decoded]
            )
            pred_tag = pred_tag.reshape(n_batch, n_parent, n_token)
            ret['prediction'] = pred_tag

        return ret

    @staticmethod
    def bio2boundary(seqs) -> Tuple[torch.Tensor, torch.Tensor]:
        def recursive_construct_spans(seqs_):
            """
            Helper function for bio2boundary
            Recursively convert seqs of integers to boundary indices.
            Return boundary indices and corresponding lens
            """
            if isinstance(seqs_, torch.Tensor):
                if seqs_.device.type == 'cuda':
                    seqs_ = seqs_.to(device='cpu')
                seqs_ = seqs_.tolist()
            if isinstance(seqs_[0], int):
                seqs_ = [BIO[i] for i in seqs_]
                span_boundary_list = bio_tags_to_spans(seqs_)
                return torch.tensor([item[1] for item in span_boundary_list]), len(span_boundary_list)
            span_boundary = list()
            lens_ = list()
            for seq in seqs_:
                one_bou, one_len = recursive_construct_spans(seq)
                span_boundary.append(one_bou)
                lens_.append(one_len)
            if isinstance(lens_[0], int):
                lens_ = torch.tensor(lens_)
            else:
                lens_ = torch.stack(lens_)
            return span_boundary, lens_

        boundary_list, lens = recursive_construct_spans(seqs)
        max_span = int(lens.max())
        boundary = torch.zeros((*lens.shape, max_span, 2), dtype=torch.long)

        def recursive_copy(list_var, tensor_var):
            if len(list_var) == 0:
                return
            if isinstance(list_var, torch.Tensor):
                tensor_var[:len(list_var)] = list_var
                return
            assert len(list_var) == len(tensor_var)
            for list_var_, tensor_var_ in zip(list_var, tensor_var):
                recursive_copy(list_var_, tensor_var_)

        recursive_copy(boundary_list, boundary)

        return boundary, lens

    def inference_forward_handler(
            self,
            token_vec: torch.Tensor,
            token_mask: torch.Tensor,
            span_extractor: SpanExtractor,
            **auxiliaries,
    ) -> Callable[[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor], None]:
        """
        Refer to the doc of the SpanFinder for definition of this function.
        """

        def handler(
                span_boundary: torch.Tensor,
                span_labels: torch.Tensor,
                parent_mask: torch.Tensor,
                parent_indices: torch.Tensor,
                cursor: torch.tensor,
        ):
            """
            Refer to the doc of the SpanFinder for definition of this function.
            """
            max_decoding_span = span_boundary.shape[1]
            # Shape [batch, span, token_dim]
            span_vec = span_extractor(token_vec, span_boundary)
            # Shape [batch, parent]
            parent_indices_at_span, _ = mask2idx(parent_mask)
            pred_bio = self(
                token_vec, token_mask, span_vec, None, span_labels, None, parent_mask, prediction=True
            )['prediction']
            # Shape [batch, parent, span, 2]; Shape [batch, parent]
            pred_boundary, pred_num = self.bio2boundary(pred_bio)
            if pred_boundary.device != span_boundary.device:
                pred_boundary = pred_boundary.to(device=span_boundary.device)
                pred_num = pred_num.to(device=span_boundary.device)
            # Shape [batch, parent, span]
            pred_mask = num2mask(pred_num)

            # Parent Loop
            for pred_boundary_parent, pred_mask_parent, parent_indices_parent \
                    in zip(pred_boundary.unbind(1), pred_mask.unbind(1), parent_indices_at_span.unbind(1)):
                for pred_boundary_step, step_mask in zip(pred_boundary_parent.unbind(1), pred_mask_parent.unbind(1)):
                    step_mask &= cursor < max_decoding_span
                    parent_indices[step_mask] = parent_indices[step_mask].scatter(
                        1,
                        cursor[step_mask].unsqueeze(1),
                        parent_indices_parent[step_mask].unsqueeze(1)
                    )
                    span_boundary[step_mask] = span_boundary[step_mask].scatter(
                        1,
                        cursor[step_mask].reshape(-1, 1, 1).expand(-1, -1, 2),
                        pred_boundary_step[step_mask].unsqueeze(1)
                    )
                    cursor[step_mask] += 1

        return handler

    def get_metrics(self, reset: bool = False) -> Dict[str, float]:
        score = self.fb_measure.get_metric(reset)
        if reset:
            return {
                'finder_p': score['precision'] * 100,
                'finder_r': score['recall'] * 100,
                'finder_f': score['fscore'] * 100,
            }
        else:
            return {'finder_f': score['fscore'] * 100}