Spaces:
Build error
Build error
import os | |
from time import time | |
from typing import * | |
import json | |
import numpy as np | |
import torch | |
from allennlp.common.util import JsonDict, sanitize | |
from allennlp.data import DatasetReader, Instance | |
from allennlp.data.data_loaders import SimpleDataLoader | |
from allennlp.data.samplers import MaxTokensBatchSampler | |
from allennlp.data.tokenizers import SpacyTokenizer | |
from allennlp.models import Model | |
from allennlp.nn import util as nn_util | |
from allennlp.predictors import Predictor | |
from concrete import ( | |
MentionArgument, SituationMentionSet, SituationMention, TokenRefSequence, | |
EntityMention, EntityMentionSet, Entity, EntitySet, AnnotationMetadata, Communication | |
) | |
from concrete.util import CommunicationReader, AnalyticUUIDGeneratorFactory, CommunicationWriterZip | |
from concrete.validate import validate_communication | |
from ..data_reader import concrete_doc, concrete_doc_tokenized | |
from ..utils import Span, re_index_span, VIRTUAL_ROOT | |
class PredictionReturn(NamedTuple): | |
span: Union[Span, dict, Communication] | |
sentence: List[str] | |
meta: Dict[str, Any] | |
class ForceDecodingReturn(NamedTuple): | |
span: np.ndarray | |
label: List[str] | |
distribution: np.ndarray | |
class SpanPredictor(Predictor): | |
def format_convert( | |
sentence: Union[List[str], List[List[str]]], | |
prediction: Union[Span, List[Span]], | |
output_format: str | |
): | |
if output_format == 'span': | |
return prediction | |
elif output_format == 'json': | |
if isinstance(prediction, list): | |
return [SpanPredictor.format_convert(sent, pred, 'json') for sent, pred in zip(sentence, prediction)] | |
return prediction.to_json() | |
elif output_format == 'concrete': | |
if isinstance(prediction, Span): | |
sentence, prediction = [sentence], [prediction] | |
return concrete_doc_tokenized(sentence, prediction) | |
def predict_concrete( | |
self, | |
concrete_path: str, | |
output_path: Optional[str] = None, | |
max_tokens: int = 2048, | |
ontology_mapping: Optional[Dict[str, str]] = None, | |
): | |
os.makedirs(os.path.dirname(output_path), exist_ok=True) | |
writer = CommunicationWriterZip(output_path) | |
for comm, fn in CommunicationReader(concrete_path): | |
assert len(comm.sectionList) == 1 | |
concrete_sentences = comm.sectionList[0].sentenceList | |
json_sentences = list() | |
for con_sent in concrete_sentences: | |
json_sentences.append( | |
[t.text for t in con_sent.tokenization.tokenList.tokenList] | |
) | |
predictions = self.predict_batch_sentences(json_sentences, max_tokens, ontology_mapping=ontology_mapping) | |
# Merge predictions into concrete | |
aug = AnalyticUUIDGeneratorFactory(comm).create() | |
situation_mention_set = SituationMentionSet(next(aug), AnnotationMetadata('Span Finder', time()), list()) | |
comm.situationMentionSetList = [situation_mention_set] | |
situation_mention_set.mentionList = sm_list = list() | |
entity_mention_set = EntityMentionSet(next(aug), AnnotationMetadata('Span Finder', time()), list()) | |
comm.entityMentionSetList = [entity_mention_set] | |
entity_mention_set.mentionList = em_list = list() | |
entity_set = EntitySet( | |
next(aug), AnnotationMetadata('Span Finder', time()), list(), None, entity_mention_set.uuid | |
) | |
comm.entitySetList = [entity_set] | |
em_dict = dict() | |
for con_sent, pred in zip(concrete_sentences, predictions): | |
for event in pred.span: | |
def raw_text_span(start_idx, end_idx, **_): | |
si_char = con_sent.tokenization.tokenList.tokenList[start_idx].textSpan.start | |
ei_char = con_sent.tokenization.tokenList.tokenList[end_idx].textSpan.ending | |
return comm.text[si_char:ei_char] | |
sm = SituationMention( | |
next(aug), | |
text=raw_text_span(event.start_idx, event.end_idx), | |
situationKind=event.label, | |
situationType='EVENT', | |
confidence=event.confidence, | |
argumentList=list(), | |
tokens=TokenRefSequence( | |
tokenIndexList=list(range(event.start_idx, event.end_idx+1)), | |
tokenizationId=con_sent.tokenization.uuid | |
) | |
) | |
for arg in event: | |
em = em_dict.get((arg.start_idx, arg.end_idx + 1)) | |
if em is None: | |
em = EntityMention( | |
next(aug), | |
tokens=TokenRefSequence( | |
tokenIndexList=list(range(arg.start_idx, arg.end_idx+1)), | |
tokenizationId=con_sent.tokenization.uuid, | |
), | |
text=raw_text_span(arg.start_idx, arg.end_idx) | |
) | |
em_list.append(em) | |
entity_set.entityList.append(Entity(next(aug), id=em.text, mentionIdList=[em.uuid])) | |
em_dict[(arg.start_idx, arg.end_idx+1)] = em | |
sm.argumentList.append(MentionArgument( | |
role=arg.label, | |
entityMentionId=em.uuid, | |
confidence=arg.confidence | |
)) | |
sm_list.append(sm) | |
validate_communication(comm) | |
writer.write(comm, fn) | |
writer.close() | |
def predict_sentence( | |
self, | |
sentence: Union[str, List[str]], | |
ontology_mapping: Optional[Dict[str, str]] = None, | |
output_format: str = 'span', | |
) -> PredictionReturn: | |
""" | |
Predict spans on a single sentence (no batch). If not tokenized, will tokenize it with SpacyTokenizer. | |
:param sentence: If tokenized, should be a list of tokens in string. If not, should be a string. | |
:param ontology_mapping: | |
:param output_format: span, json or concrete. | |
""" | |
prediction = self.predict_json(self._prepare_sentence(sentence)) | |
prediction['prediction'] = self.format_convert( | |
prediction['sentence'], | |
Span.from_json(prediction['prediction']).map_ontology(ontology_mapping), | |
output_format | |
) | |
return PredictionReturn(prediction['prediction'], prediction['sentence'], prediction.get('meta', dict())) | |
def predict_batch_sentences( | |
self, | |
sentences: List[Union[List[str], str]], | |
max_tokens: int = 512, | |
ontology_mapping: Optional[Dict[str, str]] = None, | |
output_format: str = 'span', | |
) -> List[PredictionReturn]: | |
""" | |
Predict spans on a batch of sentences. If not tokenized, will tokenize it with SpacyTokenizer. | |
:param sentences: A list of sentences. Refer to `predict_sentence`. | |
:param max_tokens: Maximum tokens in a batch. | |
:param ontology_mapping: If not None, will try to map the output from one ontology to another. | |
If the predicted frame is not in the mapping, the prediction will be ignored. | |
:param output_format: span, json or concrete. | |
:return: A list of predictions. | |
""" | |
sentences = list(map(self._prepare_sentence, sentences)) | |
for i_sent, sent in enumerate(sentences): | |
sent['meta'] = {"idx": i_sent} | |
instances = list(map(self._json_to_instance, sentences)) | |
outputs = list() | |
for ins_indices in MaxTokensBatchSampler(max_tokens, ["tokens"], 0.0).get_batch_indices(instances): | |
batch_ins = list( | |
SimpleDataLoader([instances[ins_idx] for ins_idx in ins_indices], len(ins_indices), vocab=self.vocab) | |
)[0] | |
batch_inputs = nn_util.move_to_device(batch_ins, device=self.cuda_device) | |
batch_outputs = self._model(**batch_inputs) | |
for meta, prediction, inputs in zip( | |
batch_outputs['meta'], batch_outputs['prediction'], batch_outputs['inputs'] | |
): | |
prediction.map_ontology(ontology_mapping) | |
prediction = self.format_convert(inputs['sentence'], prediction, output_format) | |
outputs.append(PredictionReturn(prediction, inputs['sentence'], {"input_idx": meta['idx']})) | |
outputs.sort(key=lambda x: x.meta['input_idx']) | |
return outputs | |
def predict_instance(self, instance: Instance) -> JsonDict: | |
outputs = self._model.forward_on_instance(instance) | |
outputs = sanitize(outputs) | |
return { | |
'prediction': outputs['prediction'], | |
'sentence': outputs['inputs']['sentence'], | |
'meta': outputs.get('meta', {}) | |
} | |
def __init__( | |
self, | |
model: Model, | |
dataset_reader: DatasetReader, | |
frozen: bool = True, | |
): | |
super(SpanPredictor, self).__init__(model=model, dataset_reader=dataset_reader, frozen=frozen) | |
self.spacy_tokenizer = SpacyTokenizer(language='en_core_web_sm') | |
def economize( | |
self, | |
max_decoding_spans: Optional[int] = None, | |
max_recursion_depth: Optional[int] = None, | |
): | |
if max_decoding_spans: | |
self._model._max_decoding_spans = max_decoding_spans | |
if max_recursion_depth: | |
self._model._max_recursion_depth = max_recursion_depth | |
def _json_to_instance(self, json_dict: JsonDict) -> Instance: | |
return self._dataset_reader.text_to_instance(**json_dict) | |
def to_nested(prediction: List[dict]): | |
first_layer, idx2children = list(), dict() | |
for idx, pred in enumerate(prediction): | |
children = list() | |
pred['children'] = idx2children[idx+1] = children | |
if pred['parent'] == 0: | |
first_layer.append(pred) | |
else: | |
idx2children[pred['parent']].append(pred) | |
del pred['parent'] | |
return first_layer | |
def _prepare_sentence(self, sentence: Union[str, List[str]]) -> Dict[str, List[str]]: | |
if isinstance(sentence, str): | |
while ' ' in sentence: | |
sentence = sentence.replace(' ', ' ') | |
sentence = sentence.replace(chr(65533), '') | |
if sentence == '': | |
sentence = [""] | |
sentence = list(map(str, self.spacy_tokenizer.tokenize(sentence))) | |
return {"tokens": sentence} | |
def json_to_concrete( | |
predictions: List[dict], | |
): | |
sentences = list() | |
for pred in predictions: | |
tokenization, event = list(), list() | |
sent = {'text': ' '.join(pred['inputs']), 'tokenization': tokenization, 'event': event} | |
sentences.append(sent) | |
start_idx = 0 | |
for token in pred['inputs']: | |
tokenization.append((start_idx, len(token)-1+start_idx)) | |
start_idx += len(token) + 1 | |
for pred_event in pred['prediction']: | |
arg_list = list() | |
one_event = {'argument': arg_list} | |
event.append(one_event) | |
for key in ['start_idx', 'end_idx', 'label']: | |
one_event[key] = pred_event[key] | |
for pred_arg in pred_event['children']: | |
arg_list.append({key: pred_arg[key] for key in ['start_idx', 'end_idx', 'label']}) | |
concrete_comm = concrete_doc(sentences) | |
return concrete_comm | |
def force_decode( | |
self, | |
sentence: List[str], | |
parent_span: Tuple[int, int] = (-1, -1), | |
parent_label: str = VIRTUAL_ROOT, | |
child_spans: Optional[List[Tuple[int, int]]] = None, | |
) -> ForceDecodingReturn: | |
""" | |
Force decoding. There are 2 modes: | |
1. Given parent span and its label, find all it children (direct children, not including other descendents) | |
and type them. | |
2. Given parent span, parent label, and children spans, type all children. | |
:param sentence: Tokens. | |
:param parent_span: [start_idx, end_idx], both inclusive. | |
:param parent_label: Parent label in string. | |
:param child_spans: Optional. If provided, will turn to mode 2; else mode 1. | |
:return: | |
- span: children spans. | |
- label: most probable labels of children. | |
- distribution: distribution over children labels. | |
""" | |
instance = self._dataset_reader.text_to_instance(self._prepare_sentence(sentence)['tokens']) | |
model_input = nn_util.move_to_device( | |
list(SimpleDataLoader([instance], 1, vocab=self.vocab))[0], device=self.cuda_device | |
) | |
offsets = instance.fields['raw_inputs'].metadata['offsets'] | |
with torch.no_grad(): | |
tokens = model_input['tokens'] | |
parent_span = re_index_span(parent_span, offsets) | |
if parent_span[1] >= self._dataset_reader.max_length: | |
return ForceDecodingReturn( | |
np.zeros([0, 2], dtype=np.int), | |
[], | |
np.zeros([0, self.vocab.get_vocab_size('span_label')], dtype=np.float64) | |
) | |
if child_spans is not None: | |
token_vec = self._model.word_embedding(tokens) | |
child_pieces = [re_index_span(bdr, offsets) for bdr in child_spans] | |
child_pieces = list(filter(lambda x: x[1] < self._dataset_reader.max_length-1, child_pieces)) | |
span_tensor = torch.tensor( | |
[parent_span] + child_pieces, dtype=torch.int64, device=self.device | |
).unsqueeze(0) | |
parent_indices = span_tensor.new_zeros(span_tensor.shape[0:2]) | |
span_labels = parent_indices.new_full( | |
parent_indices.shape, self._model.vocab.get_token_index(parent_label, 'span_label') | |
) | |
span_vec = self._model._span_extractor(token_vec, span_tensor) | |
typing_out = self._model._span_typing(span_vec, parent_indices, span_labels) | |
distribution = typing_out['distribution'][0, 1:].cpu().numpy() | |
boundary = np.array(child_spans) | |
else: | |
parent_label_tensor = torch.tensor( | |
[self._model.vocab.get_token_index(parent_label, 'span_label')], device=self.device | |
) | |
parent_boundary_tensor = torch.tensor([parent_span], device=self.device) | |
boundary, _, num_children, distribution = self._model.one_step_prediction( | |
tokens, parent_boundary_tensor, parent_label_tensor | |
) | |
boundary, distribution = boundary[0].cpu().tolist(), distribution[0].cpu().numpy() | |
boundary = np.array([re_index_span(bdr, offsets, True) for bdr in boundary]) | |
labels = [ | |
self.vocab.get_token_from_index(label_idx, 'span_label') for label_idx in distribution.argmax(1) | |
] | |
return ForceDecodingReturn(boundary, labels, distribution) | |
def vocab(self): | |
return self._model.vocab | |
def device(self): | |
return self.cuda_device if self.cuda_device > -1 else 'cpu' | |
def read_ontology_mapping(file_path: str): | |
""" | |
Read the ontology mapping file. The file format can be read in docs. | |
""" | |
if file_path is None: | |
return None | |
if file_path.endswith('.json'): | |
return json.load(open(file_path)) | |
mapping = dict() | |
for line in open(file_path).readlines(): | |
parent_label, original_label, new_label = line.replace('\n', '').split('\t') | |
if parent_label == '*': | |
mapping[original_label] = new_label | |
else: | |
mapping[(parent_label, original_label)] = new_label | |
return mapping | |