fillmorle-app / sociolome /combine_models.py
gossminn's picture
First version
6680682
raw
history blame
4.5 kB
from typing import Any, Dict, List, Optional
import dataclasses
import glob
import os
import sys
import json
import spacy
from spacy.language import Language
from sftp import SpanPredictor
@dataclasses.dataclass
class FrameAnnotation:
tokens: List[str] = dataclasses.field(default_factory=list)
pos: List[str] = dataclasses.field(default_factory=list)
@dataclasses.dataclass
class MultiLabelAnnotation(FrameAnnotation):
frame_list: List[List[str]] = dataclasses.field(default_factory=list)
lu_list: List[Optional[str]] = dataclasses.field(default_factory=list)
def to_txt(self):
for i, tok in enumerate(self.tokens):
yield f"{tok} {self.pos[i]} {'|'.join(self.frame_list[i]) or '_'} {self.lu_list[i] or '_'}"
def convert_to_seq_labels(sentence: List[str], structures: Dict[int, Dict[str, Any]]) -> List[List[str]]:
labels = [[] for _ in sentence]
for struct_id, struct in structures.items():
tgt_span = struct["target"]
frame = struct["frame"]
for i in range(tgt_span[0], tgt_span[1] + 1):
labels[i].append(f"T:{frame}@{struct_id:02}")
for role in struct["roles"]:
role_span = role["boundary"]
role_label = role["label"]
for i in range(role_span[0], role_span[1] + 1):
prefix = "B" if i == role_span[0] else "I"
labels[i].append(f"{prefix}:{frame}:{role_label}@{struct_id:02}")
return labels
def predict_combined(
spacy_model: Language,
sentences: List[str],
tgt_predictor: SpanPredictor,
frm_predictor: SpanPredictor,
bnd_predictor: SpanPredictor,
arg_predictor: SpanPredictor,
) -> List[MultiLabelAnnotation]:
annotations_out = []
for sent_idx, sent in enumerate(sentences):
sent = sent.strip()
print(f"Processing sent with idx={sent_idx}: {sent}")
doc = spacy_model(sent)
sent_tokens = [t.text for t in doc]
tgt_spans, _, _ = tgt_predictor.force_decode(sent_tokens)
frame_structures = {}
for i, span in enumerate(tgt_spans):
span = tuple(span)
_, fr_labels, _ = frm_predictor.force_decode(sent_tokens, child_spans=[span])
frame = fr_labels[0]
if frame == "@@VIRTUAL_ROOT@@@":
continue
boundaries, _, _ = bnd_predictor.force_decode(sent_tokens, parent_span=span, parent_label=frame)
_, arg_labels, _ = arg_predictor.force_decode(sent_tokens, parent_span=span, parent_label=frame, child_spans=boundaries)
frame_structures[i] = {
"target": span,
"frame": frame,
"roles": [
{"boundary": bnd, "label": label}
for bnd, label in zip(boundaries, arg_labels)
if label != "Target"
]
}
annotations_out.append(MultiLabelAnnotation(
tokens=sent_tokens,
pos=[t.pos_ for t in doc],
frame_list=convert_to_seq_labels(sent_tokens, frame_structures),
lu_list=[None for _ in sent_tokens]
))
return annotations_out
def main(input_folder):
print("Loading spaCy model ...")
nlp = spacy.load("it_core_news_md")
print("Loading predictors ...")
zs_predictor = SpanPredictor.from_path("/data/p289731/cloned/lome-models/models/spanfinder/model.mod.tar.gz", cuda_device=0)
ev_predictor = SpanPredictor.from_path("/scratch/p289731/lome-training-files/train-evalita-plus-fn-vanilla/model.tar.gz", cuda_device=0)
print("Reading input files ...")
for file in glob.glob(os.path.join(input_folder, "*.txt")):
print(file)
with open(file, encoding="utf-8") as f:
sentences = list(f)
annotations = predict_combined(nlp, sentences, zs_predictor, ev_predictor, ev_predictor, ev_predictor)
out_name = os.path.splitext(os.path.basename(file))[0]
with open(f"../../data-out/{out_name}.combined_zs_ev.tc_bilstm.txt", "w", encoding="utf-8") as f_out:
for ann in annotations:
for line in ann.to_txt():
f_out.write(line + os.linesep)
f_out.write(os.linesep)
with open(f"../../data-out/{out_name}.combined_zs_ev.tc_bilstm.json", "w", encoding="utf-8") as f_out:
json.dump([dataclasses.asdict(ann) for ann in annotations], f_out)
if __name__ == "__main__":
main(sys.argv[1])