from itertools import product import random from turtle import hideturtle import requests import json import lxml.etree as ET import gensim import pandas as pd import nltk # from nltk.corpus import framenet as fn # --- circumvent threading issues with FrameNet fn_root = nltk.data.find("{}/{}".format("corpora", "framenet_v17")) print(fn_root) fn_files = ["frRelation.xml", "frameIndex.xml", "fulltextIndex.xml", "luIndex.xml", "semTypes.xml"] fn = nltk.corpus.reader.framenet.FramenetCorpusReader(fn_root, fn_files) # --- import streamlit as st from sociolome import lome_wrapper def similarity(gensim_m, frame_1, frame_2): if f"fn_{frame_1}" not in gensim_m or f"fn_{frame_2}" not in gensim_m: return None return 1 - gensim_m.distance(f"fn_{frame_1}", f"fn_{frame_2}") def rank(gensim_m, frame_1, frame_2): frame_1 = f"fn_{frame_1}" frame_2 = f"fn_{frame_2}" if frame_1 == frame_2: return 0 for i, (word, _) in enumerate(gensim_m.most_similar(frame_1, topn=1200)): if word == frame_2: return i + 1 return -1 def format_frame_description(frame_def_xml): frame_def_fmt = [frame_def_xml.text] if frame_def_xml.text else [] for elem in frame_def_xml: if elem.tag == "ex": break elif elem.tag == "fen": frame_def_fmt.append(elem.text.upper()) elif elem.text: frame_def_fmt.append(elem.text) if elem.tail: frame_def_fmt.append(elem.tail) return "".join(frame_def_fmt).replace("frames", "stories").replace("frame", "story") def get_frame_definition(frame_info): try: # try extracting just the first sentence definition_first_sent = nltk.sent_tokenize(frame_info.definitionMarkup)[0] + "" frame_def_xml = ET.fromstring(definition_first_sent) except ET.XMLSyntaxError: # otherwise, use the full definition frame_def_xml = ET.fromstring(frame_info.definitionMarkup) return format_frame_description(frame_def_xml) def get_random_example(frame_info): exemplars = [ { "text": exemplar.text, "target_lu": lu_name, "target_idx": list(exemplar["Target"][0]), "core_fes": { role: exemplar.text[start_idx:end_idx] for role, start_idx, end_idx in exemplar.FE[0] if role in [fe for fe, fe_info in frame_info.FE.items() if fe_info.coreType == "Core"] } } for lu_name, lu_info in frame_info["lexUnit"].items() for exemplar in lu_info.exemplars if len(exemplar.text) > 30 ] if exemplars: return random.choice(exemplars) return None def make_hint(gensim_m, target, current_closest): if target == current_closest: return None most_similar = gensim_m.most_similar(f"fn_{target}", topn=1200) current_position = [word for word, _ in most_similar].index(f"fn_{current_closest}") while current_position > 0: next_closest, _ = most_similar[current_position - 1] info = fn.frame(next_closest.replace("fn_", "")) if len(info.lexUnit) > 10: exemplar = get_random_example(info) if exemplar: return next_closest, exemplar current_position -= 1 return None def get_typical_exemplar(frame_info): exemplars = [ { "text": exemplar.text, "target_lu": lu_name, "target_idx": list(exemplar["Target"][0]), "core_fes": { role: exemplar.text[start_idx:end_idx] for role, start_idx, end_idx in exemplar.FE[0] if role in [fe for fe, fe_info in frame_info.FE.items() if fe_info.coreType == "Core"] } } for lu_name, lu_info in frame_info["lexUnit"].items() for exemplar in lu_info.exemplars ] # try to find a "typical" exemplar --- typical -> as short as possible, as many FEs as possible exa_typicality_scores = [(exa, len(exa["text"]) - 25 * len(exa["core_fes"])) for exa in exemplars] if exa_typicality_scores: typical_exemplar = min(exa_typicality_scores, key=lambda t: t[1])[0] else: typical_exemplar = None return typical_exemplar def find_all_inheriting_frames(frame_name): frame_info = fn.frame(frame_name) inheritance_rels = [rel for rel in frame_info.frameRelations if rel.type.name == "Inheritance" and rel.superFrame.name == frame_name] inheritors = [rel.subFrame.name for rel in inheritance_rels] for inh in inheritors: inheritors.extend(find_all_inheriting_frames(inh)) return inheritors def has_enough_lus(frame, n=10): return len(fn.frame(frame).lexUnit) > n def choose_secret_frames(): event_frames = [frm for frm in find_all_inheriting_frames("Event") if has_enough_lus(frm)] entity_frames = [frm for frm in find_all_inheriting_frames("Entity") if has_enough_lus(frm)] return random.choice(list(product(event_frames, entity_frames))) def get_frame_info(frames): frames_and_info = [] for evoked_frame in frames: try: frame_info = fn.frame(evoked_frame) typical_sentence = get_typical_exemplar(frame_info) frames_and_info.append((evoked_frame, frame_info, typical_sentence)) except FileNotFoundError: continue return frames_and_info def get_frame_feedback(frames_and_info, gensim_m, secret_event, secret_entity): frame_feedback = [] for evoked_frame, frame_info, typical_sentence in frames_and_info: lexunits = list(frame_info.lexUnit.keys())[:5] similarity_score_1 = similarity(gensim_m, secret_event, evoked_frame) similarity_rank_1 = rank(gensim_m, secret_event, evoked_frame) similarity_score_2 = similarity(gensim_m, secret_entity, evoked_frame) similarity_rank_2 = rank(gensim_m, secret_entity, evoked_frame) if typical_sentence: typical_sentence_txt = typical_sentence['text'] else: typical_sentence_txt = None frame_feedback.append({ "frame": evoked_frame, "similarity_1": similarity_score_1 * 100 if similarity_score_1 else None, "rank_1": similarity_rank_1 if similarity_rank_1 != -1 else "far away", "similarity_2": similarity_score_2 * 100 if similarity_score_2 else None, "rank_2": similarity_rank_2 if similarity_rank_2 != -1 else "far away", "typical_words": lexunits, "typical_sentence": typical_sentence_txt }) return frame_feedback def run_game_cli(debug=True): secret_event, secret_entity = choose_secret_frames() if debug: print(f"Shhhhhh you're not supposed to know, but the secret frames are {secret_event} and {secret_entity}") print("--------\n\n\n\n") print("Welcome to FillmorLe!") print("Words are not just words: behind every word, a story is hidden that appears in our imagination when we hear the word.") print() print("In this game, your job is to activate TWO SECRET STORIES by writing sentences.") print("There will be new secret stories every day -- the first story is always about an EVENT (something that happens in the world) and the second one about an ENTITY (a thing or concept).") print("Every time you write a sentence, I will tell you which stories are hidden below the surface, and how close these stories are to the secret stories.") print("Once you write a sentence that has both of the secret stories in it, you win. Good luck and be creative!") gensim_m = gensim.models.word2vec.KeyedVectors.load_word2vec_format("data/frame_embeddings.w2v.txt") num_guesses = 0 guesses_event = [] guesses_entity = [] while True: num_guesses += 1 closest_to_event = sorted(guesses_event, key=lambda g: g[1], reverse=True)[:5] closest_to_entity = sorted(guesses_entity, key=lambda g: g[1], reverse=True)[:5] closest_to_event_txt = ", ".join([f"{frm.upper()} ({sim:.2f})" for frm, sim in closest_to_event]) closest_to_entity_txt = ", ".join([f"{frm.upper()} ({sim:.2f})" for frm, sim in closest_to_entity]) print() print(f"==== Guess #{num_guesses} ====") if secret_event in guesses_event: print("You already guessed SECRET STORY #1: ", secret_event.upper()) elif closest_to_event: print(f"Best guesses (SECRET STORY #1):", closest_to_event_txt) if secret_entity in guesses_entity: print("You already guessed SECRET STORY #1: ", secret_entity.upper()) elif closest_to_entity: print(f"Best guesses (SECRET STORY #2):", closest_to_entity_txt) sentence = input("Enter a sentence or type 'HINT' if you're stuck >>>> ").strip() if sentence == "HINT": hint_target = None while not hint_target: hint_choice = input("For which story do you want a hint? Type '1' or '2' >>>> ").strip() if hint_choice == "1": hint_target = secret_event hint_current = closest_to_event[0][0] if closest_to_event else "Event" elif hint_choice == "2": hint_target = secret_entity hint_current = closest_to_entity[0][0] if closest_to_entity else "Entity" else: print("Please type '1' or '2'.") if hint_current == hint_target: print("You don't need a hint for this story! Maybe you want a hint for the other one?") continue hint = make_hint(gensim_m, hint_target, hint_current) if hint is None: print("Sorry, you're already too close to give you a hint!") else: _, hint_example = hint hint_tgt_idx = hint_example["target_idx"] hint_example_redacted = hint_example["text"][:hint_tgt_idx[0]] + "******" + hint_example["text"][hint_tgt_idx[1]:] print(f"Your hint sentence is: «{hint_example_redacted}»") print(f"PRO TIP 1: the '******' hide a secret word. Guess the word and you will find a story that takes your one step closer to find SECRET STORY #{hint_choice}") print(f"PRO TIP 2: if you don't get the hint, just ask for a new one! You can do this as often as you want.") print("\n\n") continue r = requests.get("http://127.0.0.1:9090/analyze", params={"text": sentence}) lome_data = json.loads(r.text) frames = set() for token_items in lome_data["analyses"][0]["frame_list"]: for item in token_items: if item.startswith("T:"): evoked_frame = item.split("@")[0].replace("T:", "") frames.add(evoked_frame) frames_and_info = get_frame_info(frames) frame_feedback = get_frame_feedback(frames_and_info) for i, feedback in enumerate(frame_feedback): print(f"STORY {i}: {feedback['frame'].upper()}") if feedback["typical_sentence"]: print(f"\ttypical context: «{feedback['typical_sentence']}»") print("\ttypical words:", ", ".join(feedback["typical_words"]), "...") if feedback["similarity_1"]: guesses_event.append((evoked_frame, feedback["similarity_1"])) guesses_entity.append((evoked_frame, feedback["similarity_2"])) print(f"\tsimilarity to SECRET STORY #1: {feedback['similarity_1']:.2f}") print(f"\tsimilarity to SECRET STORY #2: {feedback['similarity_2']:.2f}") else: print("similarity: unknown") print() if not frames_and_info: print("I don't know any of the stories in your sentence. Try entering another sentence.") elif secret_event in frames and secret_entity in frames: print(f"YOU WIN! You made a sentence with both of the SECRET STORIES: {secret_event.upper()} and {secret_entity.upper()}.\nYou won the game in {num_guesses} guesses, great job!") break elif secret_event in frames: print(f"Great, you guessed SECRET STORY #1! It was {secret_event.upper()}!") print("To win, make a sentence with this story and SECRET STORY #2 hidden in it.") elif secret_entity in frames: print(f"Great, you guessed SECRET STORY #2! It was {secret_entity.upper()}!") print("To win, make a sentence with this story and SECRET STORY #1 hidden in it.") # dummy version # def analyze_sentence(sentence): # return sentence.split() def analyze_sentence(sentence): lome_data = lome_wrapper.analyze(sentence) frames = set() for token_items in lome_data["analyses"][0]["frame_list"]: for item in token_items: if item.startswith("T:"): evoked_frame = item.split("@")[0].replace("T:", "") frames.add(evoked_frame) return frames def make_frame_feedback_msg(frame_feedback): feedback_msg = [] for i, feedback in enumerate(frame_feedback): feedback_msg.append(f"* STORY {i}: *{feedback['frame'].upper()}*") feedback_msg.append("\t* typical words: *" + " ".join(feedback["typical_words"]) + "* ...") if feedback["typical_sentence"]: feedback_msg.append(f"\t* typical context: «{feedback['typical_sentence']}»") if feedback["similarity_1"]: feedback_msg.append(f"\t* similarity to SECRET STORY #1: {feedback['similarity_1']:.2f}") feedback_msg.append(f"\t* similarity to SECRET STORY #2: {feedback['similarity_2']:.2f}") else: feedback_msg.append(f"\t* similarity: unknown") return "\n".join(feedback_msg) def format_hint_sentence(hint_example): hint_tgt_idx = hint_example["target_idx"] hint_example_redacted = hint_example["text"][:hint_tgt_idx[0]] + "******" + hint_example["text"][hint_tgt_idx[1]:] return hint_example_redacted.strip() def play_turn(): # remove text from input sentence = st.session_state["cur_sentence"] st.session_state["cur_sentence"] = "" # get previous game state game_state = st.session_state["game_state"] secret_event, secret_entity = game_state["secret_event"], game_state["secret_entity"] guesses_event, guesses_entity = game_state["guesses_event"], game_state["guesses_entity"] # reset hints st.session_state["hints"] = [None, None] # reveal correct frames if sentence.strip().lower() == "show me the frames": st.warning(f"The correct frames are: {secret_event.upper()} and {secret_entity.upper()}") # process hints elif sentence.strip() == "HINT": guesses_event = sorted(game_state["guesses_event"], key=lambda t: t[1], reverse=True) guesses_entity = sorted(game_state["guesses_entity"], key=lambda t: t[1], reverse=True) best_guess_event = guesses_event[0][0] if guesses_event else "Event" best_guess_entity = guesses_entity[0][0] if guesses_entity else "Entity" event_hint = make_hint(st.session_state["gensim_model"], secret_event, best_guess_event) entity_hint = make_hint(st.session_state["gensim_model"], secret_entity, best_guess_entity) if event_hint: st.session_state["hints"][0] = format_hint_sentence(event_hint[1]) if entity_hint: st.session_state["hints"][1] = format_hint_sentence(entity_hint[1]) else: frames = analyze_sentence(sentence) frames_and_info = get_frame_info(frames) frame_feedback = get_frame_feedback(frames_and_info, st.session_state["gensim_model"], secret_event, secret_entity) # update game state post analysis game_state["num_guesses"] += 1 for fdb in frame_feedback: if fdb["similarity_1"]: guesses_event.add((fdb["frame"], fdb["similarity_1"], fdb["rank_1"])) guesses_entity.add((fdb["frame"], fdb["similarity_2"], fdb["rank_2"])) st.session_state["frame_feedback"] = frame_feedback if secret_event in frames and secret_entity in frames: st.session_state["game_over"] = True st.session_state["guesses_to_win"] = game_state["num_guesses"] def display_guess_status(): game_state = st.session_state["game_state"] guesses_entity = sorted(game_state["guesses_entity"], key=lambda t: t[1], reverse=True) guesses_event = sorted(game_state["guesses_event"], key=lambda t: t[1], reverse=True) if guesses_event or guesses_entity: st.header("Best guesses") event_col, entity_col = st.columns(2) if guesses_event: with event_col: st.subheader("Event Mini-Story") st.table(pd.DataFrame(guesses_event, columns=["Story", "Similarity", "Steps To Go"])) if game_state["secret_event"] in [g for g, _, _ in guesses_event]: st.info("Great, you guessed the Event story! In order to win, make a sentence containing both the secret stories.") if guesses_entity: with entity_col: st.subheader("Thing Mini-Story") st.table(pd.DataFrame(guesses_entity, columns=["Story", "Similarity", "Steps To Go"])) if game_state["secret_entity"] in [g for g, _, _ in guesses_entity]: st.info("Great, you guessed the Thing story! In order to win, make a sentence containing both the secret stories.") def format_feedback(frame_feedback): out = [] for fdb in frame_feedback: out.append({ "Story": fdb["frame"], "Similarity (Event)": f"{fdb['similarity_1']:.2f}", "Similarity (Thing)": f"{fdb['similarity_2']:.2f}", "Typical Context": fdb["typical_sentence"], "Typical Words": " ".join(fdb["typical_words"]) }) return out def display_introduction(): st.subheader("Why this game?") st.markdown( """ Words are not just words: behind every word, a _mini-story_ (also known as "frame") is hidden that appears in our imagination when we hear the word. For example, when we hear the word "talking" we can imagine a mini-story that involves several people who are interacting with each other. Or, if we hear the word "cookie", we might think of someone eating a cookie. """.strip()) st.subheader("How does it work?") st.markdown( "* In this game, there are two secret mini-stories, and it's your job to figure out which ones!" "\n" "* The first mini-story is about an _Event_ (something that happens in the world, like a thunderstorm, " "people talking, someone eating pasta), and the other one is a _Thing_ (a concrete thing like a tree" "or something abstract like 'love')." "\n" "* How to guess the stories? Well, just type a sentence, and we'll tell you which mini-stories are " "hidden in the sentence. For each of the stories, we'll tell you how close they are to the secret ones." "\n" "* Once you type a sentence with both of the secret mini-stories, you win!" ) def display_hints(): event_hint, entity_hint = st.session_state["hints"] if event_hint or entity_hint: st.header("Hints") st.info("So you need some help? Here you get your hint sentences! Guess the hidden word, use it in a sentence, and we'll help you get one step closer.") if event_hint: st.markdown(f"**Event Hint**:\n>_{event_hint}_") if entity_hint: st.markdown(f"**Thing Hint**:\n>_{entity_hint}_") def display_frame_feedback(): frame_feedback = st.session_state["frame_feedback"] if frame_feedback: st.header("Feedback") st.text("Your sentence contains the following stories: ") feedback_df = format_feedback(frame_feedback) st.table(pd.DataFrame(feedback_df)) def run_game_st(debug=True): if not st.session_state.get("initialized", False): secret_event, secret_entity = choose_secret_frames() gensim_m = gensim.models.word2vec.KeyedVectors.load_word2vec_format("data/frame_embeddings.w2v.txt") game_state = { "secret_event": secret_event, "secret_entity": secret_entity, "num_guesses": 0, "guesses_event": set(), "guesses_entity": set(), } st.session_state["initialized"] = True st.session_state["show_introduction"] = False st.session_state["game_over"] = False st.session_state["guesses_to_win"] = -1 st.session_state["game_state"] = game_state st.session_state["gensim_model"] = gensim_m st.session_state["frame_feedback"] = None st.session_state["hints"] = [None, None] else: gensim_m = st.session_state["gensim_model"] game_state = st.session_state["game_state"] secret_event, secret_entity = game_state["secret_event"], game_state["secret_entity"] header = st.container() with header: st.title("FillmorLe") st.checkbox("Show explanation?", key="show_introduction") if st.session_state["show_introduction"]: display_introduction() st.header(f"Guess #{st.session_state['game_state']['num_guesses'] + 1}") st.text_input("Enter a sentence or type 'HINT' if you're stuck", key="cur_sentence", on_change=play_turn) if st.session_state["game_over"]: st.success(f"You won in {st.session_state['guesses_to_win']}!") display_hints() display_frame_feedback() display_guess_status() if __name__ == "__main__": run_game_st()