from allennlp.training.metrics import FBetaMeasure, Metric @Metric.register('fbeta_mix') class FBetaMixMeasure(FBetaMeasure): def __init__(self, null_idx, **kwargs): super().__init__(**kwargs) self.null_idx = null_idx def get_metric(self, reset: bool = False): tp = float(self._true_positive_sum.sum() - self._true_positive_sum[self.null_idx]) total_pred = float(self._pred_sum.sum() - self._pred_sum[self.null_idx]) total_gold = float(self._true_sum.sum() - self._true_sum[self.null_idx]) beta2 = self._beta ** 2 p = 0. if total_pred == 0 else tp / total_pred r = 0. if total_pred == 0 else tp / total_gold f = 0. if p == 0. or r == 0. else ((1 + beta2) * p * r / (p * beta2 + r)) mix_f = { 'p': p * 100, 'r': r * 100, 'f': f * 100 } if reset: self.reset() return mix_f def add_false_negative(self, labels): for lab in labels: self._true_sum[lab] += 1