gpbhupinder commited on
Commit
f87a413
·
verified ·
1 Parent(s): 665a8f9

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +18 -15
app.py CHANGED
@@ -1,37 +1,40 @@
1
  import gradio as gr
2
  import PIL.Image as Image
 
3
  from ultralytics import ASSETS, YOLO
4
 
5
  model = YOLO("https://huggingface.co/spaces/gpbhupinder/test/blob/main/model_-%2023%20june%202024%2019_22.pt")
6
 
 
7
  def predict_image(img):
8
- """Classifies an image using a YOLOv8 model."""
9
  results = model.predict(
10
  source=img,
 
 
 
11
  imgsz=640,
12
- conf=0.25, # You can adjust this confidence threshold
13
  )
14
-
15
- # Get the top prediction
16
- if results and len(results[0].boxes) > 0:
17
- top_prediction = results[0].boxes[0]
18
- class_id = int(top_prediction.cls)
19
- confidence = float(top_prediction.conf)
20
- class_name = model.names[class_id]
21
- return f"{class_name} (Confidence: {confidence:.2f})"
22
- else:
23
- return "No classification made"
24
 
25
  iface = gr.Interface(
26
  fn=predict_image,
27
  inputs=[
28
  gr.Image(type="pil", label="Upload Image"),
 
 
29
  ],
30
- outputs=gr.Text(label="Classification Result"),
31
  title="GP Wolf Classifier",
32
- description="Upload images for classification.",
33
  examples=[
34
- ["gp.jpg"],
35
  ["wolf.jpg"],
36
  ],
37
  )
 
1
  import gradio as gr
2
  import PIL.Image as Image
3
+
4
  from ultralytics import ASSETS, YOLO
5
 
6
  model = YOLO("https://huggingface.co/spaces/gpbhupinder/test/blob/main/model_-%2023%20june%202024%2019_22.pt")
7
 
8
+
9
  def predict_image(img):
10
+ """Predicts objects in an image using a YOLOv8 model."""
11
  results = model.predict(
12
  source=img,
13
+
14
+ show_labels=True,
15
+ show_conf=True,
16
  imgsz=640,
 
17
  )
18
+
19
+ for r in results:
20
+ im_array = r.plot()
21
+ im = Image.fromarray(im_array[..., ::-1])
22
+
23
+ return im
24
+
 
 
 
25
 
26
  iface = gr.Interface(
27
  fn=predict_image,
28
  inputs=[
29
  gr.Image(type="pil", label="Upload Image"),
30
+ # gr.Slider(minimum=0, maximum=1, value=0.25, label="Confidence threshold"),
31
+ # gr.Slider(minimum=0, maximum=1, value=0.45, label="IoU threshold"),
32
  ],
33
+ outputs=gr.Image(type="pil", label="Result"),
34
  title="GP Wolf Classifier",
35
+ description="Upload images for inference.",
36
  examples=[
37
+ ["gp.jpg"],
38
  ["wolf.jpg"],
39
  ],
40
  )