import gradio as gr import numpy as np from data import temp_sensor_data, food_rating_data with gr.Blocks() as line_plots: with gr.Row(): start = gr.DateTime("2021-01-01 00:00:00", label="Start") end = gr.DateTime("2021-01-05 00:00:00", label="End") apply_btn = gr.Button("Apply", scale=0) with gr.Row(): group_by = gr.Radio(["None", "30m", "1h", "4h", "1d"], value="None", label="Group by") aggregate = gr.Radio(["sum", "mean", "median", "min", "max"], value="sum", label="Aggregation") temp_by_time = gr.LinePlot( temp_sensor_data, x="time", y="temperature", ) temp_by_time_location = gr.LinePlot( temp_sensor_data, x="time", y="temperature", color="location", ) time_graphs = [temp_by_time, temp_by_time_location] group_by.change( lambda group: [gr.LinePlot(x_bin=None if group == "None" else group)] * len(time_graphs), group_by, time_graphs ) aggregate.change( lambda aggregate: [gr.LinePlot(y_aggregate=aggregate)] * len(time_graphs), aggregate, time_graphs ) def rescale(select: gr.SelectData): return select.index rescale_evt = gr.on([plot.select for plot in time_graphs], rescale, None, [start, end]) for trigger in [apply_btn.click, rescale_evt.then]: trigger( lambda start, end: [gr.LinePlot(x_lim=[start, end])] * len(time_graphs), [start, end], time_graphs ) price_by_cuisine = gr.LinePlot( food_rating_data, x="cuisine", y="price", ) with gr.Row(): price_by_rating = gr.LinePlot( food_rating_data, x="rating", y="price", ) price_by_rating_color = gr.LinePlot( food_rating_data, x="rating", y="price", color="cuisine", color_map={"Italian": "red", "Mexican": "green", "Chinese": "blue"}, ) if __name__ == "__main__": line_plots.launch()