abidlabs HF staff commited on
Commit
b9bb7d9
1 Parent(s): aab93f0
Files changed (1) hide show
  1. app.py +58 -46
app.py CHANGED
@@ -1,12 +1,13 @@
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
- #import spaces #[uncomment to use ZeroGPU]
 
5
  from diffusers import DiffusionPipeline
6
  import torch
7
 
8
  device = "cuda" if torch.cuda.is_available() else "cpu"
9
- model_repo_id = "stabilityai/sdxl-turbo" #Replace to the model you would like to use
10
 
11
  if torch.cuda.is_available():
12
  torch_dtype = torch.float16
@@ -19,33 +20,44 @@ pipe = pipe.to(device)
19
  MAX_SEED = np.iinfo(np.int32).max
20
  MAX_IMAGE_SIZE = 1024
21
 
22
- #@spaces.GPU #[uncomment to use ZeroGPU]
23
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
24
 
 
 
 
 
 
 
 
 
 
 
 
 
25
  if randomize_seed:
26
  seed = random.randint(0, MAX_SEED)
27
-
28
  generator = torch.Generator().manual_seed(seed)
29
-
30
  image = pipe(
31
- prompt = prompt,
32
- negative_prompt = negative_prompt,
33
- guidance_scale = guidance_scale,
34
- num_inference_steps = num_inference_steps,
35
- width = width,
36
- height = height,
37
- generator = generator
38
- ).images[0]
39
-
40
  return image, seed
41
 
 
42
  examples = [
43
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
44
  "An astronaut riding a green horse",
45
  "A delicious ceviche cheesecake slice",
46
  ]
47
 
48
- css="""
49
  #col-container {
50
  margin: 0 auto;
51
  max-width: 640px;
@@ -53,14 +65,10 @@ css="""
53
  """
54
 
55
  with gr.Blocks(css=css) as demo:
56
-
57
  with gr.Column(elem_id="col-container"):
58
- gr.Markdown(f"""
59
- # Text-to-Image Gradio Template
60
- """)
61
-
62
  with gr.Row():
63
-
64
  prompt = gr.Text(
65
  label="Prompt",
66
  show_label=False,
@@ -68,20 +76,19 @@ with gr.Blocks(css=css) as demo:
68
  placeholder="Enter your prompt",
69
  container=False,
70
  )
71
-
72
  run_button = gr.Button("Run", scale=0)
73
-
74
  result = gr.Image(label="Result", show_label=False)
75
 
76
  with gr.Accordion("Advanced Settings", open=False):
77
-
78
  negative_prompt = gr.Text(
79
  label="Negative prompt",
80
  max_lines=1,
81
  placeholder="Enter a negative prompt",
82
  visible=False,
83
  )
84
-
85
  seed = gr.Slider(
86
  label="Seed",
87
  minimum=0,
@@ -89,54 +96,59 @@ with gr.Blocks(css=css) as demo:
89
  step=1,
90
  value=0,
91
  )
92
-
93
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
94
-
95
  with gr.Row():
96
-
97
  width = gr.Slider(
98
  label="Width",
99
  minimum=256,
100
  maximum=MAX_IMAGE_SIZE,
101
  step=32,
102
- value=1024, #Replace with defaults that work for your model
103
  )
104
-
105
  height = gr.Slider(
106
  label="Height",
107
  minimum=256,
108
  maximum=MAX_IMAGE_SIZE,
109
  step=32,
110
- value=1024, #Replace with defaults that work for your model
111
  )
112
-
113
  with gr.Row():
114
-
115
  guidance_scale = gr.Slider(
116
  label="Guidance scale",
117
  minimum=0.0,
118
  maximum=10.0,
119
  step=0.1,
120
- value=0.0, #Replace with defaults that work for your model
121
  )
122
-
123
  num_inference_steps = gr.Slider(
124
  label="Number of inference steps",
125
  minimum=1,
126
  maximum=50,
127
  step=1,
128
- value=2, #Replace with defaults that work for your model
129
  )
130
-
131
- gr.Examples(
132
- examples = examples,
133
- inputs = [prompt]
134
- )
135
  gr.on(
136
  triggers=[run_button.click, prompt.submit],
137
- fn = infer,
138
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
139
- outputs = [result, seed]
 
 
 
 
 
 
 
 
 
140
  )
141
 
142
- demo.launch()
 
 
1
  import gradio as gr
2
  import numpy as np
3
  import random
4
+
5
+ # import spaces #[uncomment to use ZeroGPU]
6
  from diffusers import DiffusionPipeline
7
  import torch
8
 
9
  device = "cuda" if torch.cuda.is_available() else "cpu"
10
+ model_repo_id = "stabilityai/sdxl-turbo" # Replace to the model you would like to use
11
 
12
  if torch.cuda.is_available():
13
  torch_dtype = torch.float16
 
20
  MAX_SEED = np.iinfo(np.int32).max
21
  MAX_IMAGE_SIZE = 1024
22
 
 
 
23
 
24
+ # @spaces.GPU #[uncomment to use ZeroGPU]
25
+ def infer(
26
+ prompt,
27
+ negative_prompt,
28
+ seed,
29
+ randomize_seed,
30
+ width,
31
+ height,
32
+ guidance_scale,
33
+ num_inference_steps,
34
+ progress=gr.Progress(track_tqdm=True),
35
+ ):
36
  if randomize_seed:
37
  seed = random.randint(0, MAX_SEED)
38
+
39
  generator = torch.Generator().manual_seed(seed)
40
+
41
  image = pipe(
42
+ prompt=prompt,
43
+ negative_prompt=negative_prompt,
44
+ guidance_scale=guidance_scale,
45
+ num_inference_steps=num_inference_steps,
46
+ width=width,
47
+ height=height,
48
+ generator=generator,
49
+ ).images[0]
50
+
51
  return image, seed
52
 
53
+
54
  examples = [
55
  "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
56
  "An astronaut riding a green horse",
57
  "A delicious ceviche cheesecake slice",
58
  ]
59
 
60
+ css = """
61
  #col-container {
62
  margin: 0 auto;
63
  max-width: 640px;
 
65
  """
66
 
67
  with gr.Blocks(css=css) as demo:
 
68
  with gr.Column(elem_id="col-container"):
69
+ gr.Markdown(" # Text-to-Image Gradio Template")
70
+
 
 
71
  with gr.Row():
 
72
  prompt = gr.Text(
73
  label="Prompt",
74
  show_label=False,
 
76
  placeholder="Enter your prompt",
77
  container=False,
78
  )
79
+
80
  run_button = gr.Button("Run", scale=0)
81
+
82
  result = gr.Image(label="Result", show_label=False)
83
 
84
  with gr.Accordion("Advanced Settings", open=False):
 
85
  negative_prompt = gr.Text(
86
  label="Negative prompt",
87
  max_lines=1,
88
  placeholder="Enter a negative prompt",
89
  visible=False,
90
  )
91
+
92
  seed = gr.Slider(
93
  label="Seed",
94
  minimum=0,
 
96
  step=1,
97
  value=0,
98
  )
99
+
100
  randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
101
+
102
  with gr.Row():
 
103
  width = gr.Slider(
104
  label="Width",
105
  minimum=256,
106
  maximum=MAX_IMAGE_SIZE,
107
  step=32,
108
+ value=1024, # Replace with defaults that work for your model
109
  )
110
+
111
  height = gr.Slider(
112
  label="Height",
113
  minimum=256,
114
  maximum=MAX_IMAGE_SIZE,
115
  step=32,
116
+ value=1024, # Replace with defaults that work for your model
117
  )
118
+
119
  with gr.Row():
 
120
  guidance_scale = gr.Slider(
121
  label="Guidance scale",
122
  minimum=0.0,
123
  maximum=10.0,
124
  step=0.1,
125
+ value=0.0, # Replace with defaults that work for your model
126
  )
127
+
128
  num_inference_steps = gr.Slider(
129
  label="Number of inference steps",
130
  minimum=1,
131
  maximum=50,
132
  step=1,
133
+ value=2, # Replace with defaults that work for your model
134
  )
135
+
136
+ gr.Examples(examples=examples, inputs=[prompt])
 
 
 
137
  gr.on(
138
  triggers=[run_button.click, prompt.submit],
139
+ fn=infer,
140
+ inputs=[
141
+ prompt,
142
+ negative_prompt,
143
+ seed,
144
+ randomize_seed,
145
+ width,
146
+ height,
147
+ guidance_scale,
148
+ num_inference_steps,
149
+ ],
150
+ outputs=[result, seed],
151
  )
152
 
153
+ if __name__ == "__main__":
154
+ demo.launch()