import gradio as gr #from diffusers import StableDiffusionPipeline from diffuser import AutoPipelineForText2Image import torch #model_id = "runwayml/stable-diffusion-v1-5" model_id = "stabilityai/sdxl-turbo" pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float32, safety_checker=None) def infer(prompt): prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt=prompt, guidance_scale=10.0, num_inference_steps=2, width=256, height=256).images[0] return image css=""" #col-container { margin: 0 auto; max-width: 720px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0) result = gr.Image(label="Result", show_label=False) run_button.click( fn = infer, inputs = [prompt], outputs = [result] ) demo.queue().launch()