HuBERT / fairseq /clib /cuda /ngram_repeat_block_cuda_kernel.cu
aliabd
full working demo
d5175d3
/*
Copyright (c) Microsoft Corporation.
Licensed under the MIT License.
*/
/*
Kernel implementation for blocking repeated n-grams.
*/
#include <cuda.h>
#include <cuda_runtime.h>
#include <math.h>
#include <torch/extension.h>
#include <vector>
// Ban repeated ngrams of length = 'no_repeat_ngram_size'
__global__ void banRepeatedTokens(long* __restrict__ tokens,
float* __restrict__ lprobs,
int max_predict_len, int vocab_size,
int no_repeat_ngram_size) {
auto row = blockIdx.x;
auto col = threadIdx.x;
auto start = row * (max_predict_len) + col;
// Each thread compares ngram starting from
// thread index with final ngram starting from
// step - no_repeat_ngram_size +2
auto check_start_pos = blockDim.x;
auto lprob_start = row * vocab_size;
bool is_banned = true;
extern __shared__ long tokens_shm[];
tokens_shm[col] = tokens[start];
if (col == blockDim.x - 1) {
for (int i=1; i<no_repeat_ngram_size; i++){
if (col+i < max_predict_len){
tokens_shm[col + i] = tokens[start + i];
}
}
}
__syncthreads();
for (int k = 0; k < no_repeat_ngram_size - 1; k++) {
if (tokens_shm[col + k] != tokens_shm[check_start_pos + k]) {
is_banned = false;
}
}
if (is_banned == true) {
auto token_to_be_banned = tokens_shm[col + no_repeat_ngram_size - 1];
lprobs[lprob_start + token_to_be_banned] = -INFINITY;
}
}
// Allocate blocks and threads based on
// batch size and sequence length and launch
// kernel
torch::Tensor ngram_repeat_block_cuda_forward(const torch::Tensor tokens,
torch::Tensor lprobs, int bsz,
int step, int beam_size,
int no_repeat_ngram_size) {
int threads = step - no_repeat_ngram_size + 2;
if (threads <= 0) return lprobs;
int max_predict_len = tokens.size(1);
int vocab_size = lprobs.size(1);
auto token_ptr = tokens.data_ptr<long>();
auto lprob_ptr = lprobs.data_ptr<float>();
int blocks = bsz * beam_size;
int shared_mem_size = (step + 1) * sizeof(long);
// Launching N blocks where N is number of samples in a batch (beams*bsz)
// Launching T threads where T is number of previous ngrams in a sample
// Allocating shared mem per block for fastser access of input tokens since
// each token will be accessed N times to compare with current Ngram where
// N is Ngram size.
banRepeatedTokens<<<blocks, threads, shared_mem_size>>>(
token_ptr, lprob_ptr, max_predict_len, vocab_size, no_repeat_ngram_size);
return lprobs;
}