ylacombe's picture
ylacombe HF staff
Add variable audio lengths
36654bb verified
raw
history blame
5.62 kB
import io
import math
from typing import Optional
import numpy as np
import spaces
import gradio as gr
import torch
from parler_tts import ParlerTTSForConditionalGeneration
from pydub import AudioSegment
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
from huggingface_hub import InferenceClient
import nltk
import random
nltk.download('punkt')
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
torch_dtype = torch.float16 if device != "cpu" else torch.float32
repo_id = "parler-tts/parler_tts_mini_v0.1"
jenny_repo_id = "ylacombe/parler-tts-mini-jenny-30H"
model = ParlerTTSForConditionalGeneration.from_pretrained(
jenny_repo_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True
).to(device)
client = InferenceClient()
description_tokenizer = AutoTokenizer.from_pretrained(repo_id)
prompt_tokenizer = AutoTokenizer.from_pretrained(repo_id)
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
SAMPLE_RATE = feature_extractor.sampling_rate
SEED = 42
def numpy_to_mp3(audio_array, sampling_rate):
# Normalize audio_array if it's floating-point
if np.issubdtype(audio_array.dtype, np.floating):
max_val = np.max(np.abs(audio_array)) + 1
audio_array = (audio_array / max_val) * 32767 # Normalize to 16-bit range
audio_array = audio_array.astype(np.int16)
# Create an audio segment from the numpy array
audio_segment = AudioSegment(
audio_array.tobytes(),
frame_rate=sampling_rate,
sample_width=audio_array.dtype.itemsize,
channels=1
)
# Export the audio segment to MP3 bytes - use a high bitrate to maximise quality
mp3_io = io.BytesIO()
audio_segment.export(mp3_io, format="mp3", bitrate="320k")
# Get the MP3 bytes
mp3_bytes = mp3_io.getvalue()
mp3_io.close()
return mp3_bytes
sampling_rate = model.audio_encoder.config.sampling_rate
frame_rate = model.audio_encoder.config.frame_rate
def generate_story(subject: str, setting: str) -> str:
messages = [{"role": "sytem", "content": ("You are an award-winning children's bedtime story author lauded for your inventive stories."
"You want to write a bed time story for your child. They will give you the subject and setting "
"and you will write the entire story. It should be targetted at children 5 and younger and take about "
"a minute to read")},
{"role": "user", "content": f"Please tell me a story about a {subject} in {setting}"}]
response = client.chat_completion(messages, max_tokens=1024, seed=random.randint(1, 5000))
gr.Info("Story Generated", duration=3)
story = response.choices[0].message.content
return None, None, story
@spaces.GPU
def generate_base(story):
model_input = story.replace("\n", " ").strip()
model_input_tokens = nltk.sent_tokenize(model_input)
play_steps_in_s = 4.0
play_steps = int(frame_rate * play_steps_in_s)
gr.Info("Generating Audio", duration=3)
description = "Jenny speaks at an average pace with a calm delivery in a very confined sounding environment with clear audio quality."
story_tokens = prompt_tokenizer(model_input_tokens, return_tensors="pt", padding=True).to(device)
description_tokens = description_tokenizer([description for _ in range(len(model_input_tokens))], return_tensors="pt").to(device)
speech_output = model.generate(input_ids=description_tokens.input_ids,
prompt_input_ids=story_tokens.input_ids,
attention_mask=description_tokens.attention_mask,
prompt_attention_mask=story_tokens.attention_mask,
return_dict_in_generate=True,
)
speech_output = [output.cpu().numpy()[:output_length] for (output, output_length) in zip(speech_output.sequences, speech_output.audios_length)]
return None, None, speech_output
def stream_audio(hidden_story, speech_output):
gr.Info("Reading Story")
for new_audio in speech_output:
print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
yield hidden_story, numpy_to_mp3(new_audio, sampling_rate=sampling_rate)
with gr.Blocks() as block:
gr.HTML(
f"""
<h1> Bedtime Story Reader ๐Ÿ˜ด๐Ÿ”Š </h1>
<p> Powered by <a href="https://github.com/huggingface/parler-tts"> Parler-TTS</a>
"""
)
with gr.Group():
with gr.Row():
subject = gr.Dropdown(value="Princess", choices=["Prince", "Princess", "Dog", "Cat"], label="Subject")
setting = gr.Dropdown(value="Forest", choices=["Forest", "Kingdom", "Jungle", "Underwater", "Pirate Ship"], label="Setting")
with gr.Row():
run_button = gr.Button("Generate Story", variant="primary")
with gr.Row():
with gr.Group():
audio_out = gr.Audio(label="Bed time story", streaming=True, autoplay=True)
story = gr.Textbox(label="Story")
inputs = [subject, setting]
outputs = [story, audio_out]
state = gr.State()
hidden_story = gr.State()
run_button.click(generate_story, inputs=inputs, outputs=[story, audio_out, hidden_story]).success(fn=generate_base, inputs=hidden_story, outputs=[story, audio_out, state]).success(stream_audio, inputs=[hidden_story, state], outputs=[story, audio_out])
block.queue()
block.launch(share=True)