Spaces:
Sleeping
Sleeping
import io | |
import math | |
from queue import Queue | |
from threading import Thread | |
from typing import Optional | |
import numpy as np | |
import spaces | |
import gradio as gr | |
import torch | |
from parler_tts import ParlerTTSForConditionalGeneration | |
from pydub import AudioSegment | |
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed | |
from transformers.generation.streamers import BaseStreamer | |
from huggingface_hub import InferenceClient | |
import nltk | |
nltk.download('punkt') | |
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" | |
torch_dtype = torch.float16 if device != "cpu" else torch.float32 | |
repo_id = "parler-tts/parler_tts_mini_v0.1" | |
jenny_repo_id = "ylacombe/parler-tts-mini-jenny-30H" | |
model = ParlerTTSForConditionalGeneration.from_pretrained( | |
jenny_repo_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True | |
).to(device) | |
client = InferenceClient() | |
tokenizer = AutoTokenizer.from_pretrained(repo_id) | |
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id) | |
SAMPLE_RATE = feature_extractor.sampling_rate | |
SEED = 42 | |
class ParlerTTSStreamer(BaseStreamer): | |
def __init__( | |
self, | |
model: ParlerTTSForConditionalGeneration, | |
device: Optional[str] = None, | |
play_steps: Optional[int] = 10, | |
stride: Optional[int] = None, | |
timeout: Optional[float] = None, | |
): | |
""" | |
Streamer that stores playback-ready audio in a queue, to be used by a downstream application as an iterator. This is | |
useful for applications that benefit from accessing the generated audio in a non-blocking way (e.g. in an interactive | |
Gradio demo). | |
Parameters: | |
model (`ParlerTTSForConditionalGeneration`): | |
The Parler-TTS model used to generate the audio waveform. | |
device (`str`, *optional*): | |
The torch device on which to run the computation. If `None`, will default to the device of the model. | |
play_steps (`int`, *optional*, defaults to 10): | |
The number of generation steps with which to return the generated audio array. Using fewer steps will | |
mean the first chunk is ready faster, but will require more codec decoding steps overall. This value | |
should be tuned to your device and latency requirements. | |
stride (`int`, *optional*): | |
The window (stride) between adjacent audio samples. Using a stride between adjacent audio samples reduces | |
the hard boundary between them, giving smoother playback. If `None`, will default to a value equivalent to | |
play_steps // 6 in the audio space. | |
timeout (`int`, *optional*): | |
The timeout for the audio queue. If `None`, the queue will block indefinitely. Useful to handle exceptions | |
in `.generate()`, when it is called in a separate thread. | |
""" | |
self.decoder = model.decoder | |
self.audio_encoder = model.audio_encoder | |
self.generation_config = model.generation_config | |
self.device = device if device is not None else model.device | |
# variables used in the streaming process | |
self.play_steps = play_steps | |
if stride is not None: | |
self.stride = stride | |
else: | |
hop_length = math.floor(self.audio_encoder.config.sampling_rate / self.audio_encoder.config.frame_rate) | |
self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6 | |
self.token_cache = None | |
self.to_yield = 0 | |
# varibles used in the thread process | |
self.audio_queue = Queue() | |
self.stop_signal = None | |
self.timeout = timeout | |
def apply_delay_pattern_mask(self, input_ids): | |
# build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Parler) | |
_, delay_pattern_mask = self.decoder.build_delay_pattern_mask( | |
input_ids[:, :1], | |
bos_token_id=self.generation_config.bos_token_id, | |
pad_token_id=self.generation_config.decoder_start_token_id, | |
max_length=input_ids.shape[-1], | |
) | |
# apply the pattern mask to the input ids | |
input_ids = self.decoder.apply_delay_pattern_mask(input_ids, delay_pattern_mask) | |
# revert the pattern delay mask by filtering the pad token id | |
mask = (delay_pattern_mask != self.generation_config.bos_token_id) & (delay_pattern_mask != self.generation_config.pad_token_id) | |
input_ids = input_ids[mask].reshape(1, self.decoder.num_codebooks, -1) | |
# append the frame dimension back to the audio codes | |
input_ids = input_ids[None, ...] | |
# send the input_ids to the correct device | |
input_ids = input_ids.to(self.audio_encoder.device) | |
decode_sequentially = ( | |
self.generation_config.bos_token_id in input_ids | |
or self.generation_config.pad_token_id in input_ids | |
or self.generation_config.eos_token_id in input_ids | |
) | |
if not decode_sequentially: | |
output_values = self.audio_encoder.decode( | |
input_ids, | |
audio_scales=[None], | |
) | |
else: | |
sample = input_ids[:, 0] | |
sample_mask = (sample >= self.audio_encoder.config.codebook_size).sum(dim=(0, 1)) == 0 | |
sample = sample[:, :, sample_mask] | |
output_values = self.audio_encoder.decode(sample[None, ...], [None]) | |
audio_values = output_values.audio_values[0, 0] | |
return audio_values.cpu().float().numpy() | |
def put(self, value): | |
batch_size = value.shape[0] // self.decoder.num_codebooks | |
if batch_size > 1: | |
raise ValueError("ParlerTTSStreamer only supports batch size 1") | |
if self.token_cache is None: | |
self.token_cache = value | |
else: | |
self.token_cache = torch.concatenate([self.token_cache, value[:, None]], dim=-1) | |
if self.token_cache.shape[-1] % self.play_steps == 0: | |
audio_values = self.apply_delay_pattern_mask(self.token_cache) | |
self.on_finalized_audio(audio_values[self.to_yield : -self.stride]) | |
self.to_yield += len(audio_values) - self.to_yield - self.stride | |
def end(self): | |
"""Flushes any remaining cache and appends the stop symbol.""" | |
if self.token_cache is not None: | |
audio_values = self.apply_delay_pattern_mask(self.token_cache) | |
else: | |
audio_values = np.zeros(self.to_yield) | |
self.on_finalized_audio(audio_values[self.to_yield :], stream_end=True) | |
def on_finalized_audio(self, audio: np.ndarray, stream_end: bool = False): | |
"""Put the new audio in the queue. If the stream is ending, also put a stop signal in the queue.""" | |
self.audio_queue.put(audio, timeout=self.timeout) | |
if stream_end: | |
self.audio_queue.put(self.stop_signal, timeout=self.timeout) | |
def __iter__(self): | |
return self | |
def __next__(self): | |
value = self.audio_queue.get(timeout=self.timeout) | |
if not isinstance(value, np.ndarray) and value == self.stop_signal: | |
raise StopIteration() | |
else: | |
return value | |
def numpy_to_mp3(audio_array, sampling_rate): | |
# Normalize audio_array if it's floating-point | |
if np.issubdtype(audio_array.dtype, np.floating): | |
max_val = np.max(np.abs(audio_array)) | |
audio_array = (audio_array / max_val) * 32767 # Normalize to 16-bit range | |
audio_array = audio_array.astype(np.int16) | |
# Create an audio segment from the numpy array | |
audio_segment = AudioSegment( | |
audio_array.tobytes(), | |
frame_rate=sampling_rate, | |
sample_width=audio_array.dtype.itemsize, | |
channels=1 | |
) | |
# Export the audio segment to MP3 bytes - use a high bitrate to maximise quality | |
mp3_io = io.BytesIO() | |
audio_segment.export(mp3_io, format="mp3", bitrate="320k") | |
# Get the MP3 bytes | |
mp3_bytes = mp3_io.getvalue() | |
mp3_io.close() | |
return mp3_bytes | |
sampling_rate = model.audio_encoder.config.sampling_rate | |
frame_rate = model.audio_encoder.config.frame_rate | |
import random | |
import datetime | |
def generate_base(subject, setting): | |
messages = [{"role": "sytem", "content": ("You are an award-winning children's bedtime story author lauded for your inventive stories." | |
"You want to write a bed time story for your child. They will give you the subject and setting " | |
"and you will write the entire story. It should be targetted at children 5 and younger and take about " | |
"a minute to read")}, | |
{"role": "user", "content": f"Please tell me a story about a {subject} in {setting}"}] | |
gr.Info("Generating story", duration=3) | |
response = client.chat_completion(messages, max_tokens=2048, seed=random.randint(1, 5000)) | |
gr.Info("Story Generated", duration=3) | |
story = response.choices[0].message.content | |
model_input = story.replace("\n", " ").strip() | |
model_input_tokens = nltk.sent_tokenize(model_input) | |
play_steps_in_s = 4.0 | |
play_steps = int(frame_rate * play_steps_in_s) | |
gr.Info("Generating Audio") | |
description = "Jenny speaks at an average pace with a calm delivery in a very confined sounding environment with clear audio quality." | |
story_tokens = tokenizer(model_input_tokens, return_tensors="pt", padding=True).input_ids.to(device) | |
description_tokens = tokenizer([description for _ in range(len(model_input_tokens))], return_tensors="pt").input_ids.to(device) | |
speech_output = model.generate(input_ids=description_tokens, prompt_input_ids=story_tokens) | |
speech_output = [output.cpu().numpy() for output in speech_output] | |
gr.Info("Generated Audio") | |
return None, None, {"audio": speech_output, "text": model_input} | |
def stream_audio(state): | |
speech_output = state["audio"] | |
sentences = state["text"] | |
gr.Info("Reading Story") | |
story = "" | |
for sentence, new_audio in zip(sentences, speech_output): | |
# print(f"i, j, time: {i}, {j} {datetime.datetime.now()}") | |
print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds") | |
story += f"{sentence}\n" | |
yield story, numpy_to_mp3(new_audio, sampling_rate=sampling_rate) | |
# BATCH_SIZE = 4 | |
# for i in range(0, len(model_input), BATCH_SIZE): | |
# inputs = model_input[i:min(i + BATCH_SIZE, len(model_input))] | |
# story_tokens = tokenizer(inputs, return_tensors="pt", padding=True).input_ids.to(device) | |
# description_tokens = tokenizer([description for _ in range(len(inputs))], return_tensors="pt").input_ids.to(device) | |
# speech_output = model.generate(input_ids=description_tokens, prompt_input_ids=story_tokens) | |
# speech_output = [output.cpu().numpy() for output in speech_output] | |
# for j, new_audio in enumerate(speech_output): | |
# if i + j == 0: | |
# gr.Info("Reading story", duration=3) | |
# print(f"i, j, time: {i}, {j} {datetime.datetime.now()}") | |
# print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds") | |
# yield story, numpy_to_mp3(new_audio, sampling_rate=sampling_rate) | |
# if len(inputs) != 0: | |
# input_ids = tokenizer(description, return_tensors="pt").input_ids.to(device) | |
# story = tokenizer(model_input, return_tensors="pt", padding=True).input_ids.to(device) | |
# speech_output = model.generate(input_ids=description_tokens, prompt_input_ids=story) | |
# speech_output = [output.cpu().numpy() for output in speech_output] | |
# for i, new_audio in enumerate(speech_output): | |
# if i == 0: | |
# gr.Info("Reading story", duration=3) | |
# print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds") | |
# yield story, numpy_to_mp3(new_audio, sampling_rate=sampling_rate) | |
# print(f"{i}-th part generated") | |
# pieces += [*speech_output, silence.copy()] | |
# for i, sentence in enumerate(model_input): | |
# streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps) | |
# prompt = tokenizer(sentence, return_tensors="pt").to(device) | |
# generation_kwargs = dict( | |
# input_ids=inputs.input_ids, | |
# prompt_input_ids=prompt.input_ids, | |
# streamer=streamer, | |
# do_sample=True, | |
# temperature=1.0, | |
# min_new_tokens=10, | |
# ) | |
# set_seed(SEED) | |
# thread = Thread(target=model.generate, kwargs=generation_kwargs) | |
# thread.start() | |
# for new_audio in streamer: | |
# if i == 0: | |
# gr.Info("Reading story", duration=3) | |
# print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds") | |
# yield story, numpy_to_mp3(new_audio, sampling_rate=sampling_rate) | |
with gr.Blocks() as block: | |
gr.HTML( | |
f""" | |
<h1> Bedtime Story Reader 😴🔊 </h1> | |
<p> Powered by <a href="https://github.com/huggingface/parler-tts"> Parler-TTS</a> | |
""" | |
) | |
with gr.Group(): | |
with gr.Row(): | |
subject = gr.Dropdown(value="Princess", choices=["Prince", "Princess", "Dog", "Cat"]) | |
setting = gr.Dropdown(value="Forest", choices=["Forest", "Kingdom", "Jungle", "Underwater"]) | |
with gr.Row(): | |
run_button = gr.Button("Generate Story", variant="primary") | |
with gr.Row(): | |
with gr.Group(): | |
audio_out = gr.Audio(label="Bed time story", streaming=True, autoplay=True) | |
story = gr.Textbox(label="Story") | |
inputs = [subject, setting] | |
outputs = [story, audio_out] | |
state = gr.State() | |
run_button.click(fn=generate_base, inputs=inputs, outputs=[story, audio_out, state]).success(stream_audio, inputs=state, outputs=outputs) | |
block.queue() | |
block.launch(share=True) | |