sanchit-gandhi commited on
Commit
ab3a30c
·
1 Parent(s): a823a34

from musicgen

Browse files
Files changed (3) hide show
  1. README.md +3 -2
  2. app.py +288 -0
  3. requirements.txt +1 -0
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
- title: Parler Tts Streaming
3
- emoji: 📊
4
  colorFrom: red
5
  colorTo: indigo
6
  sdk: gradio
@@ -8,6 +8,7 @@ sdk_version: 4.27.0
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
 
11
  ---
12
 
13
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: Parler-TTS Streaming
3
+ emoji: 📝
4
  colorFrom: red
5
  colorTo: indigo
6
  sdk: gradio
 
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
+ short_description: High-fidelity Text-To-Speech
12
  ---
13
 
14
  Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,288 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from queue import Queue
2
+ from threading import Thread
3
+ from typing import Optional
4
+
5
+ import numpy as np
6
+ import spaces
7
+ import gradio as gr
8
+ import torch
9
+
10
+ from parler_tts import ParlerTTSForConditionalGeneration
11
+ from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
12
+ from transformers.generation.streamers import BaseStreamer
13
+
14
+ device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
15
+ torch_dtype = torch.float16 if device != "cpu" else torch.float32
16
+
17
+ repo_id = "parler-tts/parler_tts_mini_v0.1"
18
+
19
+ model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id, torch_dtype=torch_dtype).to(device)
20
+ tokenizer = AutoTokenizer.from_pretrained(repo_id)
21
+ feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
22
+
23
+ SAMPLE_RATE = feature_extractor.sampling_rate
24
+ SEED = 42
25
+
26
+ default_text = "Please surprise me and speak in whatever voice you enjoy."
27
+ examples = [
28
+ [
29
+ "Remember - this is only the first iteration of the model! To improve the prosody and naturalness of the speech further, we're scaling up the amount of training data by a factor of five times.",
30
+ "A male speaker with a low-pitched voice delivering his words at a fast pace in a small, confined space with a very clear audio and an animated tone."
31
+ ],
32
+ [
33
+ "'This is the best time of my life, Bartley,' she said happily.",
34
+ "A female speaker with a slightly low-pitched, quite monotone voice delivers her words at a slightly faster-than-average pace in a confined space with very clear audio.",
35
+ ],
36
+ [
37
+ "Montrose also, after having experienced still more variety of good and bad fortune, threw down his arms, and retired out of the kingdom.",
38
+ "A male speaker with a slightly high-pitched voice delivering his words at a slightly slow pace in a small, confined space with a touch of background noise and a quite monotone tone.",
39
+ ],
40
+ [
41
+ "Montrose also, after having experienced still more variety of good and bad fortune, threw down his arms, and retired out of the kingdom.",
42
+ "A male speaker with a low-pitched voice delivers his words at a fast pace and an animated tone, in a very spacious environment, accompanied by noticeable background noise.",
43
+ ],
44
+ ]
45
+
46
+ class ParlerTTSStreamer(BaseStreamer):
47
+ def __init__(
48
+ self,
49
+ model: ParlerTTSForConditionalGeneration,
50
+ device: Optional[str] = None,
51
+ play_steps: Optional[int] = 10,
52
+ stride: Optional[int] = None,
53
+ timeout: Optional[float] = None,
54
+ ):
55
+ """
56
+ Streamer that stores playback-ready audio in a queue, to be used by a downstream application as an iterator. This is
57
+ useful for applications that benefit from accessing the generated audio in a non-blocking way (e.g. in an interactive
58
+ Gradio demo).
59
+ Parameters:
60
+ model (`ParlerTTSForConditionalGeneration`):
61
+ The Parler-TTS model used to generate the audio waveform.
62
+ device (`str`, *optional*):
63
+ The torch device on which to run the computation. If `None`, will default to the device of the model.
64
+ play_steps (`int`, *optional*, defaults to 10):
65
+ The number of generation steps with which to return the generated audio array. Using fewer steps will
66
+ mean the first chunk is ready faster, but will require more codec decoding steps overall. This value
67
+ should be tuned to your device and latency requirements.
68
+ stride (`int`, *optional*):
69
+ The window (stride) between adjacent audio samples. Using a stride between adjacent audio samples reduces
70
+ the hard boundary between them, giving smoother playback. If `None`, will default to a value equivalent to
71
+ play_steps // 6 in the audio space.
72
+ timeout (`int`, *optional*):
73
+ The timeout for the audio queue. If `None`, the queue will block indefinitely. Useful to handle exceptions
74
+ in `.generate()`, when it is called in a separate thread.
75
+ """
76
+ self.decoder = model.decoder
77
+ self.audio_encoder = model.audio_encoder
78
+ self.generation_config = model.generation_config
79
+ self.device = device if device is not None else model.device
80
+
81
+ # variables used in the streaming process
82
+ self.play_steps = play_steps
83
+ if stride is not None:
84
+ self.stride = stride
85
+ else:
86
+ hop_length = np.prod(self.audio_encoder.config.upsampling_ratios)
87
+ self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6
88
+ self.token_cache = None
89
+ self.to_yield = 0
90
+
91
+ # varibles used in the thread process
92
+ self.audio_queue = Queue()
93
+ self.stop_signal = None
94
+ self.timeout = timeout
95
+
96
+ def apply_delay_pattern_mask(self, input_ids):
97
+ # build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to MusicGen)
98
+ _, decoder_delay_pattern_mask = self.decoder.build_delay_pattern_mask(
99
+ input_ids[:, :1],
100
+ pad_token_id=self.generation_config.decoder_start_token_id,
101
+ max_length=input_ids.shape[-1],
102
+ )
103
+ # apply the pattern mask to the input ids
104
+ input_ids = self.decoder.apply_delay_pattern_mask(input_ids, decoder_delay_pattern_mask)
105
+
106
+ # revert the pattern delay mask by filtering the pad token id
107
+ input_ids = input_ids[input_ids != self.generation_config.pad_token_id].reshape(
108
+ 1, self.decoder.num_codebooks, -1
109
+ )
110
+
111
+ # append the frame dimension back to the audio codes
112
+ input_ids = input_ids[None, ...]
113
+
114
+ # send the input_ids to the correct device
115
+ input_ids = input_ids.to(self.audio_encoder.device)
116
+
117
+ output_values = self.audio_encoder.decode(
118
+ input_ids,
119
+ audio_scales=[None],
120
+ )
121
+ audio_values = output_values.audio_values[0, 0]
122
+ return audio_values.cpu().float().numpy()
123
+
124
+ def put(self, value):
125
+ batch_size = value.shape[0] // self.decoder.num_codebooks
126
+ if batch_size > 1:
127
+ raise ValueError("MusicgenStreamer only supports batch size 1")
128
+
129
+ if self.token_cache is None:
130
+ self.token_cache = value
131
+ else:
132
+ self.token_cache = torch.concatenate([self.token_cache, value[:, None]], dim=-1)
133
+
134
+ if self.token_cache.shape[-1] % self.play_steps == 0:
135
+ audio_values = self.apply_delay_pattern_mask(self.token_cache)
136
+ self.on_finalized_audio(audio_values[self.to_yield : -self.stride])
137
+ self.to_yield += len(audio_values) - self.to_yield - self.stride
138
+
139
+ def end(self):
140
+ """Flushes any remaining cache and appends the stop symbol."""
141
+ if self.token_cache is not None:
142
+ audio_values = self.apply_delay_pattern_mask(self.token_cache)
143
+ else:
144
+ audio_values = np.zeros(self.to_yield)
145
+
146
+ self.on_finalized_audio(audio_values[self.to_yield :], stream_end=True)
147
+
148
+ def on_finalized_audio(self, audio: np.ndarray, stream_end: bool = False):
149
+ """Put the new audio in the queue. If the stream is ending, also put a stop signal in the queue."""
150
+ self.audio_queue.put(audio, timeout=self.timeout)
151
+ if stream_end:
152
+ self.audio_queue.put(self.stop_signal, timeout=self.timeout)
153
+
154
+ def __iter__(self):
155
+ return self
156
+
157
+ def __next__(self):
158
+ value = self.audio_queue.get(timeout=self.timeout)
159
+ if not isinstance(value, np.ndarray) and value == self.stop_signal:
160
+ raise StopIteration()
161
+ else:
162
+ return value
163
+
164
+
165
+ sampling_rate = model.audio_encoder.config.sampling_rate
166
+ frame_rate = model.audio_encoder.config.frame_rate
167
+
168
+ target_dtype = np.int16
169
+ max_range = np.iinfo(target_dtype).max
170
+
171
+ @spaces.GPU
172
+ def gen_tts(text, description, play_steps_in_s=2.0):
173
+ play_steps = int(frame_rate * play_steps_in_s)
174
+ streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps)
175
+
176
+ inputs = tokenizer(description, return_tensors="pt").to(device)
177
+ prompt = tokenizer(text, return_tensors="pt").to(device)
178
+
179
+ generation_kwargs = dict(
180
+ input_ids=inputs.input_ids,
181
+ prompt_input_ids=prompt.input_ids,
182
+ streamer=streamer,
183
+ do_sample=True,
184
+ temperature=1.0,
185
+ )
186
+
187
+ set_seed(SEED)
188
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
189
+ thread.start()
190
+
191
+ for new_audio in streamer:
192
+ print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
193
+ new_audio = (new_audio * max_range).astype(np.int16)
194
+ yield sampling_rate, new_audio
195
+
196
+ css = """
197
+ #share-btn-container {
198
+ display: flex;
199
+ padding-left: 0.5rem !important;
200
+ padding-right: 0.5rem !important;
201
+ background-color: #000000;
202
+ justify-content: center;
203
+ align-items: center;
204
+ border-radius: 9999px !important;
205
+ width: 13rem;
206
+ margin-top: 10px;
207
+ margin-left: auto;
208
+ flex: unset !important;
209
+ }
210
+ #share-btn {
211
+ all: initial;
212
+ color: #ffffff;
213
+ font-weight: 600;
214
+ cursor: pointer;
215
+ font-family: 'IBM Plex Sans', sans-serif;
216
+ margin-left: 0.5rem !important;
217
+ padding-top: 0.25rem !important;
218
+ padding-bottom: 0.25rem !important;
219
+ right:0;
220
+ }
221
+ #share-btn * {
222
+ all: unset !important;
223
+ }
224
+ #share-btn-container div:nth-child(-n+2){
225
+ width: auto !important;
226
+ min-height: 0px !important;
227
+ }
228
+ #share-btn-container .wrap {
229
+ display: none !important;
230
+ }
231
+ """
232
+ with gr.Blocks(css=css) as block:
233
+ gr.HTML(
234
+ """
235
+ <div style="text-align: center; max-width: 700px; margin: 0 auto;">
236
+ <div
237
+ style="
238
+ display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
239
+ "
240
+ >
241
+ <h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
242
+ Parler-TTS 🗣️
243
+ </h1>
244
+ </div>
245
+ </div>
246
+ """
247
+ )
248
+ gr.HTML(
249
+ f"""
250
+ <p><a href="https://github.com/huggingface/parler-tts"> Parler-TTS</a> is a training and inference library for
251
+ high-fidelity text-to-speech (TTS) models. The model demonstrated here, <a href="https://huggingface.co/parler-tts/parler_tts_mini_v0.1"> Parler-TTS Mini v0.1</a>,
252
+ is the first iteration model trained using 10k hours of narrated audiobooks. It generates high-quality speech
253
+ with features that can be controlled using a simple text prompt (e.g. gender, background noise, speaking rate, pitch and reverberation).</p>
254
+
255
+ <p>Tips for ensuring good generation:
256
+ <ul>
257
+ <li>Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise</li>
258
+ <li>Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech</li>
259
+ <li>The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt</li>
260
+ </ul>
261
+ </p>
262
+ """
263
+ )
264
+ with gr.Row():
265
+ with gr.Column():
266
+ input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text")
267
+ description = gr.Textbox(label="Description", lines=2, value="", elem_id="input_description")
268
+ run_button = gr.Button("Generate Audio", variant="primary")
269
+ with gr.Column():
270
+ audio_out = gr.Audio(label="Parler-TTS generation", type="numpy", elem_id="audio_out")
271
+
272
+ inputs = [input_text, description]
273
+ outputs = [audio_out]
274
+ gr.Examples(examples=examples, fn=gen_tts, inputs=inputs, outputs=outputs, cache_examples=True)
275
+ run_button.click(fn=gen_tts, inputs=inputs, outputs=outputs, queue=True)
276
+ gr.HTML(
277
+ """
278
+ <p>To improve the prosody and naturalness of the speech further, we're scaling up the amount of training data to 50k hours of speech.
279
+ The v1 release of the model will be trained on this data, as well as inference optimisations, such as flash attention
280
+ and torch compile, that will improve the latency by 2-4x. If you want to find out more about how this model was trained and even fine-tune it yourself, check-out the
281
+ <a href="https://github.com/huggingface/parler-tts"> Parler-TTS</a> repository on GitHub.</p>
282
+
283
+ <p>The Parler-TTS codebase and its associated checkpoints are licensed under <a href='https://github.com/huggingface/parler-tts?tab=Apache-2.0-1-ov-file#readme'> Apache 2.0</a>.</p>
284
+ """
285
+ )
286
+
287
+ block.queue()
288
+ block.launch(share=True)
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ git+https://github.com/huggingface/parler-tts.git