aliabd HF staff commited on
Commit
4c94814
·
1 Parent(s): 5a357f9

Upload with huggingface_hub

Browse files
Files changed (2) hide show
  1. README.md +2 -1
  2. app.py +118 -0
README.md CHANGED
@@ -6,6 +6,7 @@ colorFrom: indigo
6
  colorTo: indigo
7
  sdk: gradio
8
  sdk_version: 3.4.1
9
- app_file: run.py
 
10
  pinned: false
11
  ---
 
6
  colorTo: indigo
7
  sdk: gradio
8
  sdk_version: 3.4.1
9
+
10
+ app_file: app.py
11
  pinned: false
12
  ---
app.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from transformers import DPTFeatureExtractor, DPTForDepthEstimation
3
+ import torch
4
+ import numpy as np
5
+ from PIL import Image
6
+ import open3d as o3d
7
+ from pathlib import Path
8
+ import os
9
+
10
+ feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-large")
11
+ model = DPTForDepthEstimation.from_pretrained("Intel/dpt-large")
12
+
13
+ def process_image(image_path):
14
+ image_path = Path(image_path)
15
+ image_raw = Image.open(image_path)
16
+ image = image_raw.resize(
17
+ (800, int(800 * image_raw.size[1] / image_raw.size[0])),
18
+ Image.Resampling.LANCZOS)
19
+
20
+ # prepare image for the model
21
+ encoding = feature_extractor(image, return_tensors="pt")
22
+
23
+ # forward pass
24
+ with torch.no_grad():
25
+ outputs = model(**encoding)
26
+ predicted_depth = outputs.predicted_depth
27
+
28
+ # interpolate to original size
29
+ prediction = torch.nn.functional.interpolate(
30
+ predicted_depth.unsqueeze(1),
31
+ size=image.size[::-1],
32
+ mode="bicubic",
33
+ align_corners=False,
34
+ ).squeeze()
35
+ output = prediction.cpu().numpy()
36
+ depth_image = (output * 255 / np.max(output)).astype('uint8')
37
+ try:
38
+ gltf_path = create_3d_obj(np.array(image), depth_image, image_path)
39
+ img = Image.fromarray(depth_image)
40
+ return [img, gltf_path, gltf_path]
41
+ except Exception as e:
42
+ gltf_path = create_3d_obj(
43
+ np.array(image), depth_image, image_path, depth=8)
44
+ img = Image.fromarray(depth_image)
45
+ return [img, gltf_path, gltf_path]
46
+ except:
47
+ print("Error reconstructing 3D model")
48
+ raise Exception("Error reconstructing 3D model")
49
+
50
+
51
+ def create_3d_obj(rgb_image, depth_image, image_path, depth=10):
52
+ depth_o3d = o3d.geometry.Image(depth_image)
53
+ image_o3d = o3d.geometry.Image(rgb_image)
54
+ rgbd_image = o3d.geometry.RGBDImage.create_from_color_and_depth(
55
+ image_o3d, depth_o3d, convert_rgb_to_intensity=False)
56
+ w = int(depth_image.shape[1])
57
+ h = int(depth_image.shape[0])
58
+
59
+ camera_intrinsic = o3d.camera.PinholeCameraIntrinsic()
60
+ camera_intrinsic.set_intrinsics(w, h, 500, 500, w/2, h/2)
61
+
62
+ pcd = o3d.geometry.PointCloud.create_from_rgbd_image(
63
+ rgbd_image, camera_intrinsic)
64
+
65
+ print('normals')
66
+ pcd.normals = o3d.utility.Vector3dVector(
67
+ np.zeros((1, 3))) # invalidate existing normals
68
+ pcd.estimate_normals(
69
+ search_param=o3d.geometry.KDTreeSearchParamHybrid(radius=0.01, max_nn=30))
70
+ pcd.orient_normals_towards_camera_location(
71
+ camera_location=np.array([0., 0., 1000.]))
72
+ pcd.transform([[1, 0, 0, 0],
73
+ [0, -1, 0, 0],
74
+ [0, 0, -1, 0],
75
+ [0, 0, 0, 1]])
76
+ pcd.transform([[-1, 0, 0, 0],
77
+ [0, 1, 0, 0],
78
+ [0, 0, 1, 0],
79
+ [0, 0, 0, 1]])
80
+
81
+ print('run Poisson surface reconstruction')
82
+ with o3d.utility.VerbosityContextManager(o3d.utility.VerbosityLevel.Debug) as cm:
83
+ mesh_raw, densities = o3d.geometry.TriangleMesh.create_from_point_cloud_poisson(
84
+ pcd, depth=depth, width=0, scale=1.1, linear_fit=True)
85
+
86
+ voxel_size = max(mesh_raw.get_max_bound() - mesh_raw.get_min_bound()) / 256
87
+ print(f'voxel_size = {voxel_size:e}')
88
+ mesh = mesh_raw.simplify_vertex_clustering(
89
+ voxel_size=voxel_size,
90
+ contraction=o3d.geometry.SimplificationContraction.Average)
91
+
92
+ # vertices_to_remove = densities < np.quantile(densities, 0.001)
93
+ # mesh.remove_vertices_by_mask(vertices_to_remove)
94
+ bbox = pcd.get_axis_aligned_bounding_box()
95
+ mesh_crop = mesh.crop(bbox)
96
+ gltf_path = f'./{image_path.stem}.gltf'
97
+ o3d.io.write_triangle_mesh(
98
+ gltf_path, mesh_crop, write_triangle_uvs=True)
99
+ return gltf_path
100
+
101
+ title = "Demo: zero-shot depth estimation with DPT + 3D Point Cloud"
102
+ description = "This demo is a variation from the original <a href='https://huggingface.co/spaces/nielsr/dpt-depth-estimation' target='_blank'>DPT Demo</a>. It uses the DPT model to predict the depth of an image and then uses 3D Point Cloud to create a 3D object."
103
+ examples = [["examples/1-jonathan-borba-CgWTqYxHEkg-unsplash.jpg"]]
104
+
105
+ iface = gr.Interface(fn=process_image,
106
+ inputs=[gr.Image(
107
+ type="filepath", label="Input Image")],
108
+ outputs=[gr.Image(label="predicted depth", type="pil"),
109
+ gr.Model3D(label="3d mesh reconstruction", clear_color=[
110
+ 1.0, 1.0, 1.0, 1.0]),
111
+ gr.File(label="3d gLTF")],
112
+ title=title,
113
+ description=description,
114
+ examples=examples,
115
+ allow_flagging="never",
116
+ cache_examples=False)
117
+
118
+ iface.launch(debug=True, enable_queue=False)