import gradio as gr import numpy as np import time # define core fn, which returns a generator {steps} times before returning the image def fake_diffusion(steps): for _ in range(steps): time.sleep(1) image = np.random.random((600, 600, 3)) yield image image = "https://i.picsum.photos/id/867/600/600.jpg?hmac=qE7QFJwLmlE_WKI7zMH6SgH5iY5fx8ec6ZJQBwKRT44" yield image demo = gr.Interface(fake_diffusion, inputs=gr.Slider(1, 10, 3, step=1), outputs="image") # define queue - required for generators demo.queue() demo.launch()