{"cells": [{"cell_type": "markdown", "id": "302934307671667531413257853548643485645", "metadata": {}, "source": ["# Gradio Demo: fraud_detector"]}, {"cell_type": "code", "execution_count": null, "id": "272996653310673477252411125948039410165", "metadata": {}, "outputs": [], "source": ["!pip install -q gradio pandas"]}, {"cell_type": "code", "execution_count": null, "id": "288918539441861185822528903084949547379", "metadata": {}, "outputs": [], "source": ["# Downloading files from the demo repo\n", "import os\n", "!wget -q https://github.com/gradio-app/gradio/raw/main/demo/fraud_detector/fraud.csv"]}, {"cell_type": "code", "execution_count": null, "id": "44380577570523278879349135829904343037", "metadata": {}, "outputs": [], "source": ["import random\n", "import os\n", "import gradio as gr\n", "\n", "def fraud_detector(card_activity, categories, sensitivity):\n", " activity_range = random.randint(0, 100)\n", " drop_columns = [\n", " column for column in [\"retail\", \"food\", \"other\"] if column not in categories\n", " ]\n", " if len(drop_columns):\n", " card_activity.drop(columns=drop_columns, inplace=True)\n", " return (\n", " card_activity,\n", " card_activity,\n", " {\"fraud\": activity_range / 100.0, \"not fraud\": 1 - activity_range / 100.0},\n", " )\n", "\n", "demo = gr.Interface(\n", " fraud_detector,\n", " [\n", " gr.CheckboxGroup(\n", " [\"retail\", \"food\", \"other\"], value=[\"retail\", \"food\", \"other\"]\n", " ),\n", " gr.Slider(1, 3),\n", " ],\n", " [\n", " \"dataframe\",\n", " gr.Label(label=\"Fraud Level\"),\n", " ],\n", " examples=[\n", " [os.path.join(os.path.abspath(''), \"fraud.csv\"), [\"retail\", \"food\", \"other\"], 1.0],\n", " ],\n", ")\n", "if __name__ == \"__main__\":\n", " demo.launch()\n"]}], "metadata": {}, "nbformat": 4, "nbformat_minor": 5}