Spaces:
Running
Running
File size: 2,096 Bytes
650f85a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 |
# URL: https://huggingface.co/spaces/gradio/image_segmentation/
# imports
import gradio as gr
from transformers import DetrFeatureExtractor, DetrForSegmentation
from PIL import Image
import numpy as np
import torch
import torchvision
import itertools
import seaborn as sns
# load model from hugging face
feature_extractor = DetrFeatureExtractor.from_pretrained('facebook/detr-resnet-50-panoptic')
model = DetrForSegmentation.from_pretrained('facebook/detr-resnet-50-panoptic')
def predict_animal_mask(im,
gr_slider_confidence):
image = Image.fromarray(im)
image = image.resize((200,200))
encoding = feature_extractor(images=image, return_tensors="pt")
outputs = model(**encoding)
logits = outputs.logits
bboxes = outputs.pred_boxes
masks = outputs.pred_masks
prob_per_query = outputs.logits.softmax(-1)[..., :-1].max(-1)[0]
keep = prob_per_query > gr_slider_confidence/100.0
label_per_pixel = torch.argmax(masks[keep].squeeze(),dim=0).detach().numpy()
color_mask = np.zeros(image.size+(3,))
palette = itertools.cycle(sns.color_palette())
for lbl in np.unique(label_per_pixel):
color_mask[label_per_pixel==lbl,:] = np.asarray(next(palette))*255
pred_img = np.array(image.convert('RGB'))*0.25 + color_mask*0.75
pred_img = pred_img.astype(np.uint8)
return pred_img
# define inputs
gr_image_input = gr.inputs.Image()
gr_slider_confidence = gr.inputs.Slider(0,100,5,85,
label='Set confidence threshold for masks')
# define output
gr_image_output = gr.outputs.Image()
# define interface
demo = gr.Interface(predict_animal_mask,
inputs = [gr_image_input,gr_slider_confidence],
outputs = gr_image_output,
title = 'Image segmentation with varying confidence',
description = "A panoptic (semantic+instance) segmentation webapp using DETR (End-to-End Object Detection) model with ResNet-50 backbone",
examples=[["cheetah.jpg", 75], ["lion.jpg", 85]])
# launch
demo.launch()
|