freddyaboulton HF staff commited on
Commit
2acc3a1
1 Parent(s): f3f7cbd
Files changed (3) hide show
  1. README.md +2 -2
  2. app.py +38 -181
  3. streamer.py +133 -0
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
- title: Bedtime Story Reader
3
- emoji: 🌈
4
  colorFrom: red
5
  colorTo: indigo
6
  sdk: gradio
 
1
  ---
2
+ title: Magic 8 Ball
3
+ emoji: 🎱
4
  colorFrom: red
5
  colorTo: indigo
6
  sdk: gradio
app.py CHANGED
@@ -1,8 +1,7 @@
1
  import io
2
  import math
3
- from queue import Queue
4
  from threading import Thread
5
- from typing import Optional
6
 
7
  import numpy as np
8
  import spaces
@@ -12,10 +11,8 @@ import torch
12
  from parler_tts import ParlerTTSForConditionalGeneration
13
  from pydub import AudioSegment
14
  from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
15
- from transformers.generation.streamers import BaseStreamer
16
  from huggingface_hub import InferenceClient
17
- import nltk
18
- nltk.download('punkt')
19
 
20
 
21
  device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
@@ -38,135 +35,6 @@ SAMPLE_RATE = feature_extractor.sampling_rate
38
  SEED = 42
39
 
40
 
41
- class ParlerTTSStreamer(BaseStreamer):
42
- def __init__(
43
- self,
44
- model: ParlerTTSForConditionalGeneration,
45
- device: Optional[str] = None,
46
- play_steps: Optional[int] = 10,
47
- stride: Optional[int] = None,
48
- timeout: Optional[float] = None,
49
- ):
50
- """
51
- Streamer that stores playback-ready audio in a queue, to be used by a downstream application as an iterator. This is
52
- useful for applications that benefit from accessing the generated audio in a non-blocking way (e.g. in an interactive
53
- Gradio demo).
54
- Parameters:
55
- model (`ParlerTTSForConditionalGeneration`):
56
- The Parler-TTS model used to generate the audio waveform.
57
- device (`str`, *optional*):
58
- The torch device on which to run the computation. If `None`, will default to the device of the model.
59
- play_steps (`int`, *optional*, defaults to 10):
60
- The number of generation steps with which to return the generated audio array. Using fewer steps will
61
- mean the first chunk is ready faster, but will require more codec decoding steps overall. This value
62
- should be tuned to your device and latency requirements.
63
- stride (`int`, *optional*):
64
- The window (stride) between adjacent audio samples. Using a stride between adjacent audio samples reduces
65
- the hard boundary between them, giving smoother playback. If `None`, will default to a value equivalent to
66
- play_steps // 6 in the audio space.
67
- timeout (`int`, *optional*):
68
- The timeout for the audio queue. If `None`, the queue will block indefinitely. Useful to handle exceptions
69
- in `.generate()`, when it is called in a separate thread.
70
- """
71
- self.decoder = model.decoder
72
- self.audio_encoder = model.audio_encoder
73
- self.generation_config = model.generation_config
74
- self.device = device if device is not None else model.device
75
-
76
- # variables used in the streaming process
77
- self.play_steps = play_steps
78
- if stride is not None:
79
- self.stride = stride
80
- else:
81
- hop_length = math.floor(self.audio_encoder.config.sampling_rate / self.audio_encoder.config.frame_rate)
82
- self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6
83
- self.token_cache = None
84
- self.to_yield = 0
85
-
86
- # varibles used in the thread process
87
- self.audio_queue = Queue()
88
- self.stop_signal = None
89
- self.timeout = timeout
90
-
91
- def apply_delay_pattern_mask(self, input_ids):
92
- # build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Parler)
93
- _, delay_pattern_mask = self.decoder.build_delay_pattern_mask(
94
- input_ids[:, :1],
95
- bos_token_id=self.generation_config.bos_token_id,
96
- pad_token_id=self.generation_config.decoder_start_token_id,
97
- max_length=input_ids.shape[-1],
98
- )
99
- # apply the pattern mask to the input ids
100
- input_ids = self.decoder.apply_delay_pattern_mask(input_ids, delay_pattern_mask)
101
-
102
- # revert the pattern delay mask by filtering the pad token id
103
- mask = (delay_pattern_mask != self.generation_config.bos_token_id) & (delay_pattern_mask != self.generation_config.pad_token_id)
104
- input_ids = input_ids[mask].reshape(1, self.decoder.num_codebooks, -1)
105
- # append the frame dimension back to the audio codes
106
- input_ids = input_ids[None, ...]
107
-
108
- # send the input_ids to the correct device
109
- input_ids = input_ids.to(self.audio_encoder.device)
110
-
111
- decode_sequentially = (
112
- self.generation_config.bos_token_id in input_ids
113
- or self.generation_config.pad_token_id in input_ids
114
- or self.generation_config.eos_token_id in input_ids
115
- )
116
- if not decode_sequentially:
117
- output_values = self.audio_encoder.decode(
118
- input_ids,
119
- audio_scales=[None],
120
- )
121
- else:
122
- sample = input_ids[:, 0]
123
- sample_mask = (sample >= self.audio_encoder.config.codebook_size).sum(dim=(0, 1)) == 0
124
- sample = sample[:, :, sample_mask]
125
- output_values = self.audio_encoder.decode(sample[None, ...], [None])
126
-
127
- audio_values = output_values.audio_values[0, 0]
128
- return audio_values.cpu().float().numpy()
129
-
130
- def put(self, value):
131
- batch_size = value.shape[0] // self.decoder.num_codebooks
132
- if batch_size > 1:
133
- raise ValueError("ParlerTTSStreamer only supports batch size 1")
134
-
135
- if self.token_cache is None:
136
- self.token_cache = value
137
- else:
138
- self.token_cache = torch.concatenate([self.token_cache, value[:, None]], dim=-1)
139
-
140
- if self.token_cache.shape[-1] % self.play_steps == 0:
141
- audio_values = self.apply_delay_pattern_mask(self.token_cache)
142
- self.on_finalized_audio(audio_values[self.to_yield : -self.stride])
143
- self.to_yield += len(audio_values) - self.to_yield - self.stride
144
-
145
- def end(self):
146
- """Flushes any remaining cache and appends the stop symbol."""
147
- if self.token_cache is not None:
148
- audio_values = self.apply_delay_pattern_mask(self.token_cache)
149
- else:
150
- audio_values = np.zeros(self.to_yield)
151
-
152
- self.on_finalized_audio(audio_values[self.to_yield :], stream_end=True)
153
-
154
- def on_finalized_audio(self, audio: np.ndarray, stream_end: bool = False):
155
- """Put the new audio in the queue. If the stream is ending, also put a stop signal in the queue."""
156
- self.audio_queue.put(audio, timeout=self.timeout)
157
- if stream_end:
158
- self.audio_queue.put(self.stop_signal, timeout=self.timeout)
159
-
160
- def __iter__(self):
161
- return self
162
-
163
- def __next__(self):
164
- value = self.audio_queue.get(timeout=self.timeout)
165
- if not isinstance(value, np.ndarray) and value == self.stop_signal:
166
- raise StopIteration()
167
- else:
168
- return value
169
-
170
  def numpy_to_mp3(audio_array, sampling_rate):
171
  # Normalize audio_array if it's floating-point
172
  if np.issubdtype(audio_array.dtype, np.floating):
@@ -195,75 +63,64 @@ def numpy_to_mp3(audio_array, sampling_rate):
195
  sampling_rate = model.audio_encoder.config.sampling_rate
196
  frame_rate = model.audio_encoder.config.frame_rate
197
 
198
- import random
199
- import datetime
200
-
201
  @spaces.GPU
202
- def generate_base(subject, setting):
203
 
204
- messages = [{"role": "sytem", "content": ("You are an award-winning children's bedtime story author lauded for your inventive stories."
205
- "You want to write a bed time story for your child. They will give you the subject and setting "
206
- "and you will write the entire story. It should be targetted at children 5 and younger and take about "
207
- "a minute to read")},
208
- {"role": "user", "content": f"Please tell me a story about a {subject} in {setting}"}]
209
- gr.Info("Generating story", duration=3)
 
 
210
  response = client.chat_completion(messages, max_tokens=1024, seed=random.randint(1, 5000))
211
- gr.Info("Story Generated", duration=3)
212
- story = response.choices[0].message.content
213
 
214
- model_input = story.replace("\n", " ").strip()
215
- model_input_tokens = nltk.sent_tokenize(model_input)
216
 
217
- play_steps_in_s = 3.0
218
  play_steps = int(frame_rate * play_steps_in_s)
219
 
220
  description = "Jenny speaks at an average pace with a calm delivery in a very confined sounding environment with clear audio quality."
221
  description_tokens = tokenizer(description, return_tensors="pt").to(device)
222
 
223
- for i, sentence in enumerate(model_input_tokens):
224
- streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps)
225
- print("SENTENCE", sentence)
226
- prompt = tokenizer(sentence, return_tensors="pt").to(device)
 
 
 
 
 
 
 
227
 
228
- generation_kwargs = dict(
229
- input_ids=description_tokens.input_ids,
230
- prompt_input_ids=prompt.input_ids,
231
- streamer=streamer,
232
- do_sample=True,
233
- temperature=1.0,
234
- min_new_tokens=10,
235
- )
236
 
237
- set_seed(SEED)
238
- thread = Thread(target=model.generate, kwargs=generation_kwargs)
239
- thread.start()
240
 
241
- for new_audio in streamer:
242
- if i == 0:
243
- gr.Info("Reading story", duration=3)
244
- print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
245
- yield story, numpy_to_mp3(new_audio, sampling_rate=sampling_rate)
246
 
247
  with gr.Blocks() as block:
248
  gr.HTML(
249
  f"""
250
- <h1> Bedtime Story Reader 😴🔊 </h1>
251
- <p> Powered by <a href="https://github.com/huggingface/parler-tts"> Parler-TTS</a>
252
  """
253
  )
254
  with gr.Group():
255
  with gr.Row():
256
- subject = gr.Dropdown(value="Princess", choices=["Prince", "Princess", "Dog", "Cat"], label="Subject")
257
- setting = gr.Dropdown(value="Forest", choices=["Forest", "Kingdom", "Jungle", "Underwater", "Pirate Ship"], label="Setting")
258
  with gr.Row():
259
- run_button = gr.Button("Generate Story", variant="primary")
260
- with gr.Row():
261
- with gr.Group():
262
- audio_out = gr.Audio(label="Bed time story", streaming=True, autoplay=True)
263
- story = gr.Textbox(label="Story")
264
 
265
- inputs = [subject, setting]
266
- outputs = [story, audio_out]
267
- run_button.click(fn=generate_base, inputs=inputs, outputs=outputs)
268
 
269
  block.launch()
 
1
  import io
2
  import math
 
3
  from threading import Thread
4
+ import random
5
 
6
  import numpy as np
7
  import spaces
 
11
  from parler_tts import ParlerTTSForConditionalGeneration
12
  from pydub import AudioSegment
13
  from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
 
14
  from huggingface_hub import InferenceClient
15
+ from streamer import ParlerTTSStreamer
 
16
 
17
 
18
  device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
 
35
  SEED = 42
36
 
37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
38
  def numpy_to_mp3(audio_array, sampling_rate):
39
  # Normalize audio_array if it's floating-point
40
  if np.issubdtype(audio_array.dtype, np.floating):
 
63
  sampling_rate = model.audio_encoder.config.sampling_rate
64
  frame_rate = model.audio_encoder.config.frame_rate
65
 
 
 
 
66
  @spaces.GPU
67
+ def generate_base(audio):
68
 
69
+ question = client.audtomatic_speech_recognition(audio)
70
+
71
+ messages = [{"role": "sytem", "content": ("You are a magic 8 ball."
72
+ "Someone will present to you a situation or question and your job "
73
+ "is to answer with a cryptic addage or proverb such as "
74
+ "'curiosity killed the cat' or 'The early bird gets the worm'.")},
75
+ {"role": "user", "content": f"Please tell me what to do about {question}"}]
76
+
77
  response = client.chat_completion(messages, max_tokens=1024, seed=random.randint(1, 5000))
78
+ response = response.choices[0].message.content
 
79
 
 
 
80
 
81
+ play_steps_in_s = 1.0
82
  play_steps = int(frame_rate * play_steps_in_s)
83
 
84
  description = "Jenny speaks at an average pace with a calm delivery in a very confined sounding environment with clear audio quality."
85
  description_tokens = tokenizer(description, return_tensors="pt").to(device)
86
 
87
+ streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps)
88
+ prompt = tokenizer(sentence, return_tensors="pt").to(device)
89
+
90
+ generation_kwargs = dict(
91
+ input_ids=description_tokens.input_ids,
92
+ prompt_input_ids=prompt.input_ids,
93
+ streamer=streamer,
94
+ do_sample=True,
95
+ temperature=1.0,
96
+ min_new_tokens=10,
97
+ )
98
 
99
+ set_seed(SEED)
100
+ thread = Thread(target=model.generate, kwargs=generation_kwargs)
101
+ thread.start()
 
 
 
 
 
102
 
103
+ for new_audio in streamer:
104
+ print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds")
105
+ yield story, numpy_to_mp3(new_audio, sampling_rate=sampling_rate)
106
 
107
+ css=""".my-group {max-width: 600px !important; max-height: 600 !important;}
108
+ .my-column {display: flex !important; justify-content: center !important; align-items: center !important};"""
 
 
 
109
 
110
  with gr.Blocks() as block:
111
  gr.HTML(
112
  f"""
113
+ <h1 style='text-align: center;'> Magic 8 Ball 🎱 </h1>
114
+ <p style='text-align: center;'> Powered by <a href="https://github.com/huggingface/parler-tts"> Parler-TTS</a>
115
  """
116
  )
117
  with gr.Group():
118
  with gr.Row():
119
+ audio_out = gr.Audio(visble=False, streaming=True)
120
+ answer = gr.Textbox(label="Answer")
121
  with gr.Row():
122
+ audio_in = gr.Audio(label="Speak you question", sources="microphone", format="filepath")
 
 
 
 
123
 
124
+ audio_in.stop_recording(fn=generate_base, inputs=audio_in, outputs=[answer, audio_out])
 
 
125
 
126
  block.launch()
streamer.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from queue import Queue
2
+ from transformers.generation.streamers import BaseStreamer
3
+ from typing import Optional
4
+
5
+
6
+ class ParlerTTSStreamer(BaseStreamer):
7
+ def __init__(
8
+ self,
9
+ model: ParlerTTSForConditionalGeneration,
10
+ device: Optional[str] = None,
11
+ play_steps: Optional[int] = 10,
12
+ stride: Optional[int] = None,
13
+ timeout: Optional[float] = None,
14
+ ):
15
+ """
16
+ Streamer that stores playback-ready audio in a queue, to be used by a downstream application as an iterator. This is
17
+ useful for applications that benefit from accessing the generated audio in a non-blocking way (e.g. in an interactive
18
+ Gradio demo).
19
+ Parameters:
20
+ model (`ParlerTTSForConditionalGeneration`):
21
+ The Parler-TTS model used to generate the audio waveform.
22
+ device (`str`, *optional*):
23
+ The torch device on which to run the computation. If `None`, will default to the device of the model.
24
+ play_steps (`int`, *optional*, defaults to 10):
25
+ The number of generation steps with which to return the generated audio array. Using fewer steps will
26
+ mean the first chunk is ready faster, but will require more codec decoding steps overall. This value
27
+ should be tuned to your device and latency requirements.
28
+ stride (`int`, *optional*):
29
+ The window (stride) between adjacent audio samples. Using a stride between adjacent audio samples reduces
30
+ the hard boundary between them, giving smoother playback. If `None`, will default to a value equivalent to
31
+ play_steps // 6 in the audio space.
32
+ timeout (`int`, *optional*):
33
+ The timeout for the audio queue. If `None`, the queue will block indefinitely. Useful to handle exceptions
34
+ in `.generate()`, when it is called in a separate thread.
35
+ """
36
+ self.decoder = model.decoder
37
+ self.audio_encoder = model.audio_encoder
38
+ self.generation_config = model.generation_config
39
+ self.device = device if device is not None else model.device
40
+
41
+ # variables used in the streaming process
42
+ self.play_steps = play_steps
43
+ if stride is not None:
44
+ self.stride = stride
45
+ else:
46
+ hop_length = math.floor(self.audio_encoder.config.sampling_rate / self.audio_encoder.config.frame_rate)
47
+ self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6
48
+ self.token_cache = None
49
+ self.to_yield = 0
50
+
51
+ # varibles used in the thread process
52
+ self.audio_queue = Queue()
53
+ self.stop_signal = None
54
+ self.timeout = timeout
55
+
56
+ def apply_delay_pattern_mask(self, input_ids):
57
+ # build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Parler)
58
+ _, delay_pattern_mask = self.decoder.build_delay_pattern_mask(
59
+ input_ids[:, :1],
60
+ bos_token_id=self.generation_config.bos_token_id,
61
+ pad_token_id=self.generation_config.decoder_start_token_id,
62
+ max_length=input_ids.shape[-1],
63
+ )
64
+ # apply the pattern mask to the input ids
65
+ input_ids = self.decoder.apply_delay_pattern_mask(input_ids, delay_pattern_mask)
66
+
67
+ # revert the pattern delay mask by filtering the pad token id
68
+ mask = (delay_pattern_mask != self.generation_config.bos_token_id) & (delay_pattern_mask != self.generation_config.pad_token_id)
69
+ input_ids = input_ids[mask].reshape(1, self.decoder.num_codebooks, -1)
70
+ # append the frame dimension back to the audio codes
71
+ input_ids = input_ids[None, ...]
72
+
73
+ # send the input_ids to the correct device
74
+ input_ids = input_ids.to(self.audio_encoder.device)
75
+
76
+ decode_sequentially = (
77
+ self.generation_config.bos_token_id in input_ids
78
+ or self.generation_config.pad_token_id in input_ids
79
+ or self.generation_config.eos_token_id in input_ids
80
+ )
81
+ if not decode_sequentially:
82
+ output_values = self.audio_encoder.decode(
83
+ input_ids,
84
+ audio_scales=[None],
85
+ )
86
+ else:
87
+ sample = input_ids[:, 0]
88
+ sample_mask = (sample >= self.audio_encoder.config.codebook_size).sum(dim=(0, 1)) == 0
89
+ sample = sample[:, :, sample_mask]
90
+ output_values = self.audio_encoder.decode(sample[None, ...], [None])
91
+
92
+ audio_values = output_values.audio_values[0, 0]
93
+ return audio_values.cpu().float().numpy()
94
+
95
+ def put(self, value):
96
+ batch_size = value.shape[0] // self.decoder.num_codebooks
97
+ if batch_size > 1:
98
+ raise ValueError("ParlerTTSStreamer only supports batch size 1")
99
+
100
+ if self.token_cache is None:
101
+ self.token_cache = value
102
+ else:
103
+ self.token_cache = torch.concatenate([self.token_cache, value[:, None]], dim=-1)
104
+
105
+ if self.token_cache.shape[-1] % self.play_steps == 0:
106
+ audio_values = self.apply_delay_pattern_mask(self.token_cache)
107
+ self.on_finalized_audio(audio_values[self.to_yield : -self.stride])
108
+ self.to_yield += len(audio_values) - self.to_yield - self.stride
109
+
110
+ def end(self):
111
+ """Flushes any remaining cache and appends the stop symbol."""
112
+ if self.token_cache is not None:
113
+ audio_values = self.apply_delay_pattern_mask(self.token_cache)
114
+ else:
115
+ audio_values = np.zeros(self.to_yield)
116
+
117
+ self.on_finalized_audio(audio_values[self.to_yield :], stream_end=True)
118
+
119
+ def on_finalized_audio(self, audio: np.ndarray, stream_end: bool = False):
120
+ """Put the new audio in the queue. If the stream is ending, also put a stop signal in the queue."""
121
+ self.audio_queue.put(audio, timeout=self.timeout)
122
+ if stream_end:
123
+ self.audio_queue.put(self.stop_signal, timeout=self.timeout)
124
+
125
+ def __iter__(self):
126
+ return self
127
+
128
+ def __next__(self):
129
+ value = self.audio_queue.get(timeout=self.timeout)
130
+ if not isinstance(value, np.ndarray) and value == self.stop_signal:
131
+ raise StopIteration()
132
+ else:
133
+ return value