import io import math from queue import Queue from threading import Thread from typing import Optional import numpy as np import spaces import gradio as gr import torch from parler_tts import ParlerTTSForConditionalGeneration from pydub import AudioSegment from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed from transformers.generation.streamers import BaseStreamer from huggingface_hub import InferrenceClient device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" torch_dtype = torch.float16 if device != "cpu" else torch.float32 repo_id = "parler-tts/parler_tts_mini_v0.1" model = ParlerTTSForConditionalGeneration.from_pretrained( repo_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True ).to(device) client = InferenceClient() tokenizer = AutoTokenizer.from_pretrained(repo_id) feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id) SAMPLE_RATE = feature_extractor.sampling_rate SEED = 42 class ParlerTTSStreamer(BaseStreamer): def __init__( self, model: ParlerTTSForConditionalGeneration, device: Optional[str] = None, play_steps: Optional[int] = 10, stride: Optional[int] = None, timeout: Optional[float] = None, ): """ Streamer that stores playback-ready audio in a queue, to be used by a downstream application as an iterator. This is useful for applications that benefit from accessing the generated audio in a non-blocking way (e.g. in an interactive Gradio demo). Parameters: model (`ParlerTTSForConditionalGeneration`): The Parler-TTS model used to generate the audio waveform. device (`str`, *optional*): The torch device on which to run the computation. If `None`, will default to the device of the model. play_steps (`int`, *optional*, defaults to 10): The number of generation steps with which to return the generated audio array. Using fewer steps will mean the first chunk is ready faster, but will require more codec decoding steps overall. This value should be tuned to your device and latency requirements. stride (`int`, *optional*): The window (stride) between adjacent audio samples. Using a stride between adjacent audio samples reduces the hard boundary between them, giving smoother playback. If `None`, will default to a value equivalent to play_steps // 6 in the audio space. timeout (`int`, *optional*): The timeout for the audio queue. If `None`, the queue will block indefinitely. Useful to handle exceptions in `.generate()`, when it is called in a separate thread. """ self.decoder = model.decoder self.audio_encoder = model.audio_encoder self.generation_config = model.generation_config self.device = device if device is not None else model.device # variables used in the streaming process self.play_steps = play_steps if stride is not None: self.stride = stride else: hop_length = math.floor(self.audio_encoder.config.sampling_rate / self.audio_encoder.config.frame_rate) self.stride = hop_length * (play_steps - self.decoder.num_codebooks) // 6 self.token_cache = None self.to_yield = 0 # varibles used in the thread process self.audio_queue = Queue() self.stop_signal = None self.timeout = timeout def apply_delay_pattern_mask(self, input_ids): # build the delay pattern mask for offsetting each codebook prediction by 1 (this behaviour is specific to Parler) _, delay_pattern_mask = self.decoder.build_delay_pattern_mask( input_ids[:, :1], bos_token_id=self.generation_config.bos_token_id, pad_token_id=self.generation_config.decoder_start_token_id, max_length=input_ids.shape[-1], ) # apply the pattern mask to the input ids input_ids = self.decoder.apply_delay_pattern_mask(input_ids, delay_pattern_mask) # revert the pattern delay mask by filtering the pad token id mask = (delay_pattern_mask != self.generation_config.bos_token_id) & (delay_pattern_mask != self.generation_config.pad_token_id) input_ids = input_ids[mask].reshape(1, self.decoder.num_codebooks, -1) # append the frame dimension back to the audio codes input_ids = input_ids[None, ...] # send the input_ids to the correct device input_ids = input_ids.to(self.audio_encoder.device) decode_sequentially = ( self.generation_config.bos_token_id in input_ids or self.generation_config.pad_token_id in input_ids or self.generation_config.eos_token_id in input_ids ) if not decode_sequentially: output_values = self.audio_encoder.decode( input_ids, audio_scales=[None], ) else: sample = input_ids[:, 0] sample_mask = (sample >= self.audio_encoder.config.codebook_size).sum(dim=(0, 1)) == 0 sample = sample[:, :, sample_mask] output_values = self.audio_encoder.decode(sample[None, ...], [None]) audio_values = output_values.audio_values[0, 0] return audio_values.cpu().float().numpy() def put(self, value): batch_size = value.shape[0] // self.decoder.num_codebooks if batch_size > 1: raise ValueError("ParlerTTSStreamer only supports batch size 1") if self.token_cache is None: self.token_cache = value else: self.token_cache = torch.concatenate([self.token_cache, value[:, None]], dim=-1) if self.token_cache.shape[-1] % self.play_steps == 0: audio_values = self.apply_delay_pattern_mask(self.token_cache) self.on_finalized_audio(audio_values[self.to_yield : -self.stride]) self.to_yield += len(audio_values) - self.to_yield - self.stride def end(self): """Flushes any remaining cache and appends the stop symbol.""" if self.token_cache is not None: audio_values = self.apply_delay_pattern_mask(self.token_cache) else: audio_values = np.zeros(self.to_yield) self.on_finalized_audio(audio_values[self.to_yield :], stream_end=True) def on_finalized_audio(self, audio: np.ndarray, stream_end: bool = False): """Put the new audio in the queue. If the stream is ending, also put a stop signal in the queue.""" self.audio_queue.put(audio, timeout=self.timeout) if stream_end: self.audio_queue.put(self.stop_signal, timeout=self.timeout) def __iter__(self): return self def __next__(self): value = self.audio_queue.get(timeout=self.timeout) if not isinstance(value, np.ndarray) and value == self.stop_signal: raise StopIteration() else: return value def numpy_to_mp3(audio_array, sampling_rate): # Normalize audio_array if it's floating-point if np.issubdtype(audio_array.dtype, np.floating): max_val = np.max(np.abs(audio_array)) audio_array = (audio_array / max_val) * 32767 # Normalize to 16-bit range audio_array = audio_array.astype(np.int16) # Create an audio segment from the numpy array audio_segment = AudioSegment( audio_array.tobytes(), frame_rate=sampling_rate, sample_width=audio_array.dtype.itemsize, channels=1 ) # Export the audio segment to MP3 bytes - use a high bitrate to maximise quality mp3_io = io.BytesIO() audio_segment.export(mp3_io, format="mp3", bitrate="320k") # Get the MP3 bytes mp3_bytes = mp3_io.getvalue() mp3_io.close() return mp3_bytes sampling_rate = model.audio_encoder.config.sampling_rate frame_rate = model.audio_encoder.config.frame_rate import random @spaces.GPU def generate_base(subject, setting, ): messages = [{"role": "sytem", "content": ("You are an award-winning children's bedtime story author lauded for your inventive stories." "You want to write a bed time story for your child. They will give you the subject and setting " "and you will write the entire story. It should be targetted at children 5 and younger and take about " "a minute to read")}, {"role": "user", "content": f"Please tell me a story about a {subject} in {setting}"}] gr.Info("Generating story", duration=3) response = client.chat_completion(messages, max_tokens=2048, seed=random.randint(1, 5000)) gr.Info("Story Generated", duration=3) story = output.choices[0].content play_steps_in_s = 2.0 play_steps = int(frame_rate * play_steps_in_s) streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps) description = "A female speaker with a calm, warm, monotone voice delivers her words at a normal pace confined space with very clear audio." inputs = tokenizer(description, return_tensors="pt").to(device) prompt = tokenizer(story, return_tensors="pt").to(device) generation_kwargs = dict( input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids, streamer=streamer, do_sample=True, temperature=1.0, min_new_tokens=10, ) set_seed(SEED) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() yield story, None gr.Info("Reading story", duration=3) for new_audio in streamer: print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds") yield story, numpy_to_mp3(new_audio, sampling_rate=sampling_rate) with gr.Blocks(css=css) as block: gr.HTML( f"""
Powered by Parler-TTS """ ) with gr.Row(): subject = gr.Dropdown(value="Princess", choices=["Prince", "Princess", "Dog", "Cat"]) setting = gr.Dropdown(value="Forest", choices=["Forest", "Kingdom", "Jungle", "Underwater"]) with gr.Row(): with gr.Group(): audio_out = gr.Audio(label="Bed time story", streaming=True, autoplay=True) story = gr.Textbox(label="Story") inputs = [subject, setting] outputs = [audio_out, story] run_button.click(fn=generate_base, inputs=inputs, outputs=outputs) block.queue() block.launch(share=True)