import io from threading import Thread import random import os import numpy as np import spaces import gradio as gr import torch from parler_tts import ParlerTTSForConditionalGeneration from pydub import AudioSegment from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed from huggingface_hub import InferenceClient from streamer import ParlerTTSStreamer import time device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu" torch_dtype = torch.float16 if device != "cpu" else torch.float32 repo_id = "parler-tts/parler_tts_mini_v0.1" jenny_repo_id = "ylacombe/parler-tts-mini-jenny-30H" model = ParlerTTSForConditionalGeneration.from_pretrained( jenny_repo_id, torch_dtype=torch_dtype, low_cpu_mem_usage=True ).to(device) client = InferenceClient(token=os.getenv("HF_TOKEN")) tokenizer = AutoTokenizer.from_pretrained(repo_id) feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id) SAMPLE_RATE = feature_extractor.sampling_rate SEED = 42 def numpy_to_mp3(audio_array, sampling_rate): # Normalize audio_array if it's floating-point if np.issubdtype(audio_array.dtype, np.floating): max_val = np.max(np.abs(audio_array)) audio_array = (audio_array / max_val) * 32767 # Normalize to 16-bit range audio_array = audio_array.astype(np.int16) # Create an audio segment from the numpy array audio_segment = AudioSegment( audio_array.tobytes(), frame_rate=sampling_rate, sample_width=audio_array.dtype.itemsize, channels=1 ) # Export the audio segment to MP3 bytes - use a high bitrate to maximise quality mp3_io = io.BytesIO() audio_segment.export(mp3_io, format="mp3", bitrate="320k") # Get the MP3 bytes mp3_bytes = mp3_io.getvalue() mp3_io.close() return mp3_bytes sampling_rate = model.audio_encoder.config.sampling_rate frame_rate = model.audio_encoder.config.frame_rate def generate_response(audio): gr.Info("Transcribing Audio", duration=5) question = client.automatic_speech_recognition(audio).text messages = [{"role": "system", "content": ("You are a magic 8 ball." "Someone will present to you a situation or question and your job " "is to answer with a cryptic addage or proverb such as " "'curiosity killed the cat' or 'The early bird gets the worm'." "Keep your answers short and do not include the phrase 'Magic 8 Ball' in your response. If the question does not make sense or is off-topic, say 'Foolish questions get foolish answers.'" "For example, 'Magic 8 Ball, should I get a dog?', 'A dog is ready for you but are you ready for the dog?'")}, {"role": "user", "content": f"Magic 8 Ball please answer this question - {question}"}] response = client.chat_completion(messages, max_tokens=64, seed=random.randint(1, 5000), model="mistralai/Mistral-7B-Instruct-v0.3") response = response.choices[0].message.content.replace("Magic 8 Ball", "") return response, None, None @spaces.GPU def read_response(answer): play_steps_in_s = 2.0 play_steps = int(frame_rate * play_steps_in_s) description = "Jenny speaks at an average pace with a calm delivery in a very confined sounding environment with clear audio quality." description_tokens = tokenizer(description, return_tensors="pt").to(device) streamer = ParlerTTSStreamer(model, device=device, play_steps=play_steps) prompt = tokenizer(answer, return_tensors="pt").to(device) generation_kwargs = dict( input_ids=description_tokens.input_ids, prompt_input_ids=prompt.input_ids, streamer=streamer, do_sample=True, temperature=1.0, min_new_tokens=10, ) set_seed(SEED) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() start = time.time() for new_audio in streamer: print(f"Sample of length: {round(new_audio.shape[0] / sampling_rate, 2)} seconds after {time.time() - start} seconds") yield answer, numpy_to_mp3(new_audio, sampling_rate=sampling_rate) with gr.Blocks() as block: gr.HTML( f"""

Magic 8 Ball 🎱

Ask a question and receive wisdom

Powered by Parler-TTS """ ) with gr.Group(): with gr.Row(): audio_out = gr.Audio(label="Spoken Answer", streaming=True, autoplay=True, loop=False) answer = gr.Textbox(label="Answer") state = gr.State() with gr.Row(): audio_in = gr.Audio(label="Speak you question", sources="microphone", type="filepath") audio_in.stop_recording(generate_response, audio_in, [state, answer, audio_out]).then(fn=read_response, inputs=state, outputs=[answer, audio_out]) block.launch()