Spaces:
Running
Running
# URL: https://huggingface.co/spaces/gradio/text_generation | |
# imports | |
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
# loading the model | |
tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-j-6B") | |
model = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-j-6B") | |
# defining the core function | |
def generate(text): | |
generation_pipeline = pipeline("text-generation", model=model, tokenizer=tokenizer) | |
result = generation_pipeline(text) | |
return result[0]["generated_text"] | |
# defining title, description and examples | |
title = "Text Generation with GPT-J-6B" | |
description = "This demo generates text using GPT-J 6B: a transformer model trained using Ben Wang's Mesh Transformer JAX." | |
examples = [ | |
["The Moon's orbit around Earth has"], | |
["The smooth Borealis basin in the Northern Hemisphere covers 40%"], | |
] | |
# defining the interface | |
demo = gr.Interface( | |
fn=generate, | |
inputs=gr.inputs.Textbox(lines=5, label="Input Text"), | |
outputs=gr.outputs.Textbox(label="Generated Text"), | |
title=title, | |
description=description, | |
examples=examples, | |
) | |
# launching | |
demo.launch() | |