File size: 7,531 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
import torch
from torch import nn
import trimesh
import math
from typing import NewType
from pytorch3d.structures import Meshes
from pytorch3d.renderer.mesh import rasterize_meshes
Tensor = NewType('Tensor', torch.Tensor)
def solid_angles(points: Tensor,
triangles: Tensor,
thresh: float = 1e-8) -> Tensor:
''' Compute solid angle between the input points and triangles
Follows the method described in:
The Solid Angle of a Plane Triangle
A. VAN OOSTEROM AND J. STRACKEE
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING,
VOL. BME-30, NO. 2, FEBRUARY 1983
Parameters
-----------
points: BxQx3
Tensor of input query points
triangles: BxFx3x3
Target triangles
thresh: float
float threshold
Returns
-------
solid_angles: BxQxF
A tensor containing the solid angle between all query points
and input triangles
'''
# Center the triangles on the query points. Size should be BxQxFx3x3
centered_tris = triangles[:, None] - points[:, :, None, None]
# BxQxFx3
norms = torch.norm(centered_tris, dim=-1)
# Should be BxQxFx3
cross_prod = torch.cross(centered_tris[:, :, :, 1],
centered_tris[:, :, :, 2],
dim=-1)
# Should be BxQxF
numerator = (centered_tris[:, :, :, 0] * cross_prod).sum(dim=-1)
del cross_prod
dot01 = (centered_tris[:, :, :, 0] * centered_tris[:, :, :, 1]).sum(dim=-1)
dot12 = (centered_tris[:, :, :, 1] * centered_tris[:, :, :, 2]).sum(dim=-1)
dot02 = (centered_tris[:, :, :, 0] * centered_tris[:, :, :, 2]).sum(dim=-1)
del centered_tris
denominator = (norms.prod(dim=-1) + dot01 * norms[:, :, :, 2] +
dot02 * norms[:, :, :, 1] + dot12 * norms[:, :, :, 0])
del dot01, dot12, dot02, norms
# Should be BxQ
solid_angle = torch.atan2(numerator, denominator)
del numerator, denominator
torch.cuda.empty_cache()
return 2 * solid_angle
def winding_numbers(points: Tensor,
triangles: Tensor,
thresh: float = 1e-8) -> Tensor:
''' Uses winding_numbers to compute inside/outside
Robust inside-outside segmentation using generalized winding numbers
Alec Jacobson,
Ladislav Kavan,
Olga Sorkine-Hornung
Fast Winding Numbers for Soups and Clouds SIGGRAPH 2018
Gavin Barill
NEIL G. Dickson
Ryan Schmidt
David I.W. Levin
and Alec Jacobson
Parameters
-----------
points: BxQx3
Tensor of input query points
triangles: BxFx3x3
Target triangles
thresh: float
float threshold
Returns
-------
winding_numbers: BxQ
A tensor containing the Generalized winding numbers
'''
# The generalized winding number is the sum of solid angles of the point
# with respect to all triangles.
return 1 / (4 * math.pi) * solid_angles(points, triangles,
thresh=thresh).sum(dim=-1)
def batch_contains(verts, faces, points):
B = verts.shape[0]
N = points.shape[1]
verts = verts.detach().cpu()
faces = faces.detach().cpu()
points = points.detach().cpu()
contains = torch.zeros(B, N)
for i in range(B):
contains[i] = torch.as_tensor(
trimesh.Trimesh(verts[i], faces[i]).contains(points[i]))
return 2.0 * (contains - 0.5)
def dict2obj(d):
# if isinstance(d, list):
# d = [dict2obj(x) for x in d]
if not isinstance(d, dict):
return d
class C(object):
pass
o = C()
for k in d:
o.__dict__[k] = dict2obj(d[k])
return o
def face_vertices(vertices, faces):
"""
:param vertices: [batch size, number of vertices, 3]
:param faces: [batch size, number of faces, 3]
:return: [batch size, number of faces, 3, 3]
"""
bs, nv = vertices.shape[:2]
bs, nf = faces.shape[:2]
device = vertices.device
faces = faces + (torch.arange(bs, dtype=torch.int32).to(device) *
nv)[:, None, None]
vertices = vertices.reshape((bs * nv, vertices.shape[-1]))
return vertices[faces.long()]
class Pytorch3dRasterizer(nn.Module):
""" Borrowed from https://github.com/facebookresearch/pytorch3d
Notice:
x,y,z are in image space, normalized
can only render squared image now
"""
def __init__(self, image_size=224):
"""
use fixed raster_settings for rendering faces
"""
super().__init__()
raster_settings = {
'image_size': image_size,
'blur_radius': 0.0,
'faces_per_pixel': 1,
'bin_size': None,
'max_faces_per_bin': None,
'perspective_correct': True,
'cull_backfaces': True,
}
raster_settings = dict2obj(raster_settings)
self.raster_settings = raster_settings
def forward(self, vertices, faces, attributes=None):
fixed_vertices = vertices.clone()
fixed_vertices[..., :2] = -fixed_vertices[..., :2]
meshes_screen = Meshes(verts=fixed_vertices.float(),
faces=faces.long())
raster_settings = self.raster_settings
pix_to_face, zbuf, bary_coords, dists = rasterize_meshes(
meshes_screen,
image_size=raster_settings.image_size,
blur_radius=raster_settings.blur_radius,
faces_per_pixel=raster_settings.faces_per_pixel,
bin_size=raster_settings.bin_size,
max_faces_per_bin=raster_settings.max_faces_per_bin,
perspective_correct=raster_settings.perspective_correct,
)
vismask = (pix_to_face > -1).float()
D = attributes.shape[-1]
attributes = attributes.clone()
attributes = attributes.view(attributes.shape[0] * attributes.shape[1],
3, attributes.shape[-1])
N, H, W, K, _ = bary_coords.shape
mask = pix_to_face == -1
pix_to_face = pix_to_face.clone()
pix_to_face[mask] = 0
idx = pix_to_face.view(N * H * W * K, 1, 1).expand(N * H * W * K, 3, D)
pixel_face_vals = attributes.gather(0, idx).view(N, H, W, K, 3, D)
pixel_vals = (bary_coords[..., None] * pixel_face_vals).sum(dim=-2)
pixel_vals[mask] = 0 # Replace masked values in output.
pixel_vals = pixel_vals[:, :, :, 0].permute(0, 3, 1, 2)
pixel_vals = torch.cat(
[pixel_vals, vismask[:, :, :, 0][:, None, :, :]], dim=1)
return pixel_vals
|