File size: 5,321 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import os
import torch
import numpy as np
import torch.nn.functional as F
from skimage.transform import resize
# Use a non-interactive backend
import matplotlib
matplotlib.use('Agg')
from .renderer import OpenDRenderer, PyRenderer
def iuv_map2img(U_uv, V_uv, Index_UV, AnnIndex=None, uv_rois=None, ind_mapping=None):
device_id = U_uv.get_device()
batch_size = U_uv.size(0)
K = U_uv.size(1)
heatmap_size = U_uv.size(2)
Index_UV_max = torch.argmax(Index_UV, dim=1)
if AnnIndex is None:
Index_UV_max = Index_UV_max.to(torch.int64)
else:
AnnIndex_max = torch.argmax(AnnIndex, dim=1)
Index_UV_max = Index_UV_max * (AnnIndex_max > 0).to(torch.int64)
outputs = []
for batch_id in range(batch_size):
output = torch.zeros([3, U_uv.size(2), U_uv.size(3)], dtype=torch.float32).cuda(device_id)
output[0] = Index_UV_max[batch_id].to(torch.float32)
if ind_mapping is None:
output[0] /= float(K - 1)
else:
for ind in range(len(ind_mapping)):
output[0][output[0] == ind] = ind_mapping[ind] * (1. / 24.)
for part_id in range(1, K):
CurrentU = U_uv[batch_id, part_id]
CurrentV = V_uv[batch_id, part_id]
output[1,
Index_UV_max[batch_id] == part_id] = CurrentU[Index_UV_max[batch_id] == part_id]
output[2,
Index_UV_max[batch_id] == part_id] = CurrentV[Index_UV_max[batch_id] == part_id]
if uv_rois is None:
outputs.append(output.unsqueeze(0))
else:
roi_fg = uv_rois[batch_id][1:]
w = roi_fg[2] - roi_fg[0]
h = roi_fg[3] - roi_fg[1]
aspect_ratio = float(w) / h
if aspect_ratio < 1:
new_size = [heatmap_size, max(int(heatmap_size * aspect_ratio), 1)]
output = F.interpolate(output.unsqueeze(0), size=new_size, mode='nearest')
paddingleft = int(0.5 * (heatmap_size - new_size[1]))
output = F.pad(
output, pad=(paddingleft, heatmap_size - new_size[1] - paddingleft, 0, 0)
)
else:
new_size = [max(int(heatmap_size / aspect_ratio), 1), heatmap_size]
output = F.interpolate(output.unsqueeze(0), size=new_size, mode='nearest')
paddingtop = int(0.5 * (heatmap_size - new_size[0]))
output = F.pad(
output, pad=(0, 0, paddingtop, heatmap_size - new_size[0] - paddingtop)
)
outputs.append(output)
return torch.cat(outputs, dim=0)
def vis_smpl_iuv(
image,
cam_pred,
vert_pred,
face,
pred_uv,
vert_errors_batch,
image_name,
save_path,
opt,
ratio=1
):
# save_path = os.path.join('./notebooks/output/demo_results-wild', ids[f_id][0])
if not os.path.exists(save_path):
os.makedirs(save_path)
# dr_render = OpenDRenderer(ratio=ratio)
dr_render = PyRenderer()
focal_length = 5000.
orig_size = 224.
if pred_uv is not None:
iuv_img = iuv_map2img(*pred_uv)
for draw_i in range(len(cam_pred)):
err_val = '{:06d}_'.format(int(10 * vert_errors_batch[draw_i]))
draw_name = err_val + image_name[draw_i]
K = np.array(
[[focal_length, 0., orig_size / 2.], [0., focal_length, orig_size / 2.], [0., 0., 1.]]
)
# img_orig, img_resized, img_smpl, render_smpl_rgba = dr_render(
# image[draw_i],
# cam_pred[draw_i],
# vert_pred[draw_i],
# face,
# draw_name[:-4]
# )
if opt.save_obj:
os.makedirs(os.path.join(save_path, 'mesh'), exist_ok=True)
mesh_filename = os.path.join(save_path, 'mesh', draw_name[:-4] + '.obj')
else:
mesh_filename = None
img_orig = np.moveaxis(image[draw_i], 0, -1)
img_smpl, img_resized = dr_render(
vert_pred[draw_i],
img=img_orig,
cam=cam_pred[draw_i],
iwp_mode=True,
scale_ratio=4.,
mesh_filename=mesh_filename,
)
ones_img = np.ones(img_smpl.shape[:2]) * 255
ones_img = ones_img[:, :, None]
img_smpl_rgba = np.concatenate((img_smpl, ones_img), axis=2)
img_resized_rgba = np.concatenate((img_resized, ones_img), axis=2)
# render_img = np.concatenate((img_resized_rgba, img_smpl_rgba, render_smpl_rgba * 255), axis=1)
render_img = np.concatenate((img_resized_rgba, img_smpl_rgba), axis=1)
render_img[render_img < 0] = 0
render_img[render_img > 255] = 255
matplotlib.image.imsave(
os.path.join(save_path, draw_name[:-4] + '.png'), render_img.astype(np.uint8)
)
if pred_uv is not None:
# estimated global IUV
global_iuv = iuv_img[draw_i].cpu().numpy()
global_iuv = np.transpose(global_iuv, (1, 2, 0))
global_iuv = resize(global_iuv, img_resized.shape[:2])
global_iuv[global_iuv > 1] = 1
global_iuv[global_iuv < 0] = 0
matplotlib.image.imsave(
os.path.join(save_path, 'pred_uv_' + draw_name[:-4] + '.png'), global_iuv
)
|