File size: 15,744 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
from lib.hybrik.models.simple3dpose import HybrIKBaseSMPLCam
from lib.pixielib.utils.config import cfg as pixie_cfg
from lib.pixielib.pixie import PIXIE
import lib.smplx as smplx
# from lib.pare.pare.core.tester import PARETester
from lib.pymaf.utils.geometry import rot6d_to_rotmat, batch_rodrigues, rotation_matrix_to_angle_axis
from lib.pymaf.utils.imutils import process_image
from lib.common.imutils import econ_process_image
from lib.pymaf.core import path_config
from lib.pymaf.models import pymaf_net
from lib.common.config import cfg
from lib.common.render import Render
from lib.dataset.body_model import TetraSMPLModel
from lib.dataset.mesh_util import get_visibility
from utils.smpl_util import SMPLX
import os.path as osp
import os
import torch
import numpy as np
import random
from termcolor import colored
from PIL import ImageFile
from torchvision.models import detection
ImageFile.LOAD_TRUNCATED_IMAGES = True
class SMPLDataset():
def __init__(self, cfg, device):
random.seed(1993)
self.image_dir = cfg['image_dir']
self.seg_dir = cfg['seg_dir']
self.hps_type = cfg['hps_type']
self.smpl_type = 'smpl' if cfg['hps_type'] != 'pixie' else 'smplx'
self.smpl_gender = 'neutral'
self.colab = cfg['colab']
self.device = device
keep_lst = [f"{self.image_dir}/{i}" for i in sorted(os.listdir(self.image_dir))]
img_fmts = ['jpg', 'png', 'jpeg', "JPG", 'bmp']
keep_lst = [item for item in keep_lst if item.split(".")[-1] in img_fmts]
self.subject_list = [item for item in keep_lst if item.split(".")[-1] in img_fmts]
if self.colab:
self.subject_list = [self.subject_list[0]]
# smpl related
self.smpl_data = SMPLX()
# smpl-smplx correspondence
self.smpl_joint_ids_24 = np.arange(22).tolist() + [68, 73]
self.smpl_joint_ids_24_pixie = np.arange(22).tolist() + [68 + 61, 72 + 68]
self.get_smpl_model = lambda smpl_type, smpl_gender: smplx.create(model_path=self.smpl_data.
model_dir,
gender=smpl_gender,
model_type=smpl_type,
ext='npz')
# Load SMPL model
self.smpl_model = self.get_smpl_model(self.smpl_type, self.smpl_gender).to(self.device)
self.faces = self.smpl_model.faces
if self.hps_type == 'pymaf':
self.hps = pymaf_net(path_config.SMPL_MEAN_PARAMS, pretrained=True).to(self.device)
self.hps.load_state_dict(torch.load(path_config.CHECKPOINT_FILE)['model'], strict=True)
self.hps.eval()
elif self.hps_type == 'pare':
self.hps = PARETester(path_config.CFG, path_config.CKPT).model
elif self.hps_type == 'pixie':
self.hps = PIXIE(config=pixie_cfg, device=self.device)
self.smpl_model = self.hps.smplx
elif self.hps_type == 'hybrik':
smpl_path = osp.join(self.smpl_data.model_dir, "smpl/SMPL_NEUTRAL.pkl")
self.hps = HybrIKBaseSMPLCam(cfg_file=path_config.HYBRIK_CFG,
smpl_path=smpl_path,
data_path=path_config.hybrik_data_dir)
self.hps.load_state_dict(torch.load(path_config.HYBRIK_CKPT, map_location='cpu'),
strict=False)
self.hps.to(self.device)
elif self.hps_type == 'bev':
try:
import bev
except:
print('Could not find bev, installing via pip install --upgrade simple-romp')
os.system('pip install simple-romp==1.0.3')
import bev
settings = bev.main.default_settings
# change the argparse settings of bev here if you prefer other settings.
settings.mode = 'image'
settings.GPU = int(str(self.device).split(':')[1])
settings.show_largest = True
# settings.show = True # uncommit this to show the original BEV predictions
self.hps = bev.BEV(settings)
self.detector=detection.maskrcnn_resnet50_fpn(pretrained=True)
self.detector.eval()
print(colored(f"Using {self.hps_type} as HPS Estimator\n", "green"))
self.render = Render(size=512, device=device)
def __len__(self):
return len(self.subject_list)
def compute_vis_cmap(self, smpl_verts, smpl_faces):
(xy, z) = torch.as_tensor(smpl_verts).split([2, 1], dim=1)
smpl_vis = get_visibility(xy, -z, torch.as_tensor(smpl_faces).long())
smpl_cmap = self.smpl_data.cmap_smpl_vids(self.smpl_type)
return {
'smpl_vis': smpl_vis.unsqueeze(0).to(self.device),
'smpl_cmap': smpl_cmap.unsqueeze(0).to(self.device),
'smpl_verts': smpl_verts.unsqueeze(0)
}
def compute_voxel_verts(self, body_pose, global_orient, betas, trans, scale):
smpl_path = osp.join(self.smpl_data.model_dir, "smpl/SMPL_NEUTRAL.pkl")
tetra_path = osp.join(self.smpl_data.tedra_dir, 'tetra_neutral_adult_smpl.npz')
smpl_model = TetraSMPLModel(smpl_path, tetra_path, 'adult')
pose = torch.cat([global_orient[0], body_pose[0]], dim=0)
smpl_model.set_params(rotation_matrix_to_angle_axis(rot6d_to_rotmat(pose)), beta=betas[0])
verts = np.concatenate([smpl_model.verts, smpl_model.verts_added],
axis=0) * scale.item() + trans.detach().cpu().numpy()
faces = np.loadtxt(osp.join(self.smpl_data.tedra_dir, 'tetrahedrons_neutral_adult.txt'),
dtype=np.int32) - 1
pad_v_num = int(8000 - verts.shape[0])
pad_f_num = int(25100 - faces.shape[0])
verts = np.pad(verts,
((0, pad_v_num),
(0, 0)), mode='constant', constant_values=0.0).astype(np.float32) * 0.5
faces = np.pad(faces, ((0, pad_f_num), (0, 0)), mode='constant',
constant_values=0.0).astype(np.int32)
verts[:, 2] *= -1.0
voxel_dict = {
'voxel_verts': torch.from_numpy(verts).to(self.device).unsqueeze(0).float(),
'voxel_faces': torch.from_numpy(faces).to(self.device).unsqueeze(0).long(),
'pad_v_num': torch.tensor(pad_v_num).to(self.device).unsqueeze(0).long(),
'pad_f_num': torch.tensor(pad_f_num).to(self.device).unsqueeze(0).long()
}
return voxel_dict
def __getitem__(self, index):
img_path = self.subject_list[index]
img_name = img_path.split("/")[-1].rsplit(".", 1)[0]
print(img_name)
# smplx_param_path=f'./data/thuman2/smplx/{img_name[:-2]}.pkl'
# smplx_param = np.load(smplx_param_path, allow_pickle=True)
if self.seg_dir is None:
img_icon, img_hps, img_ori, img_mask, uncrop_param = process_image(
img_path, self.hps_type, 512, self.device)
data_dict = {
'name': img_name,
'image': img_icon.to(self.device).unsqueeze(0),
'ori_image': img_ori,
'mask': img_mask,
'uncrop_param': uncrop_param
}
else:
img_icon, img_hps, img_ori, img_mask, uncrop_param, segmentations = process_image(
img_path,
self.hps_type,
512,
self.device,
seg_path=os.path.join(self.seg_dir, f'{img_name}.json'))
data_dict = {
'name': img_name,
'image': img_icon.to(self.device).unsqueeze(0),
'ori_image': img_ori,
'mask': img_mask,
'uncrop_param': uncrop_param,
'segmentations': segmentations
}
arr_dict=econ_process_image(img_path,self.hps_type,True,512,self.detector)
data_dict['hands_visibility']=arr_dict['hands_visibility']
with torch.no_grad():
# import ipdb; ipdb.set_trace()
preds_dict = self.hps.forward(img_hps)
data_dict['smpl_faces'] = torch.Tensor(self.faces.astype(np.int64)).long().unsqueeze(0).to(
self.device)
if self.hps_type == 'pymaf':
output = preds_dict['smpl_out'][-1]
scale, tranX, tranY = output['theta'][0, :3]
data_dict['betas'] = output['pred_shape']
data_dict['body_pose'] = output['rotmat'][:, 1:]
data_dict['global_orient'] = output['rotmat'][:, 0:1]
data_dict['smpl_verts'] = output['verts'] # 不确定尺度是否一样
data_dict["type"] = "smpl"
elif self.hps_type == 'pare':
data_dict['body_pose'] = preds_dict['pred_pose'][:, 1:]
data_dict['global_orient'] = preds_dict['pred_pose'][:, 0:1]
data_dict['betas'] = preds_dict['pred_shape']
data_dict['smpl_verts'] = preds_dict['smpl_vertices']
scale, tranX, tranY = preds_dict['pred_cam'][0, :3]
data_dict["type"] = "smpl"
elif self.hps_type == 'pixie':
data_dict.update(preds_dict)
data_dict['body_pose'] = preds_dict['body_pose']
data_dict['global_orient'] = preds_dict['global_pose']
data_dict['betas'] = preds_dict['shape']
data_dict['smpl_verts'] = preds_dict['vertices']
scale, tranX, tranY = preds_dict['cam'][0, :3]
data_dict["type"] = "smplx"
elif self.hps_type == 'hybrik':
data_dict['body_pose'] = preds_dict['pred_theta_mats'][:, 1:]
data_dict['global_orient'] = preds_dict['pred_theta_mats'][:, [0]]
data_dict['betas'] = preds_dict['pred_shape']
data_dict['smpl_verts'] = preds_dict['pred_vertices']
scale, tranX, tranY = preds_dict['pred_camera'][0, :3]
scale = scale * 2
data_dict["type"] = "smpl"
elif self.hps_type == 'bev':
data_dict['betas'] = torch.from_numpy(preds_dict['smpl_betas'])[[0], :10].to(
self.device).float()
pred_thetas = batch_rodrigues(
torch.from_numpy(preds_dict['smpl_thetas'][0]).reshape(-1, 3)).float()
data_dict['body_pose'] = pred_thetas[1:][None].to(self.device)
data_dict['global_orient'] = pred_thetas[[0]][None].to(self.device)
data_dict['smpl_verts'] = torch.from_numpy(preds_dict['verts'][[0]]).to(
self.device).float()
tranX = preds_dict['cam_trans'][0, 0]
tranY = preds_dict['cam'][0, 1] + 0.28
scale = preds_dict['cam'][0, 0] * 1.1
data_dict["type"] = "smpl"
data_dict['scale'] = scale
data_dict['trans'] = torch.tensor([tranX, tranY, 0.0]).unsqueeze(0).to(self.device).float()
# data_dict info (key-shape):
# scale, tranX, tranY - tensor.float
# betas - [1,10] / [1, 200]
# body_pose - [1, 23, 3, 3] / [1, 21, 3, 3]
# global_orient - [1, 1, 3, 3]
# smpl_verts - [1, 6890, 3] / [1, 10475, 3]
# from rot_mat to rot_6d for better optimization
N_body = data_dict["body_pose"].shape[1]
data_dict["body_pose"] = data_dict["body_pose"][:, :, :, :2].reshape(1, N_body, -1)
data_dict["global_orient"] = data_dict["global_orient"][:, :, :, :2].reshape(1, 1, -1)
return data_dict
def render_normal(self, verts, faces):
# render optimized mesh (normal, T_normal, image [-1,1])
self.render.load_meshes(verts, faces)
return self.render.get_rgb_image()
def render_depth(self, verts, faces):
# render optimized mesh (normal, T_normal, image [-1,1])
self.render.load_meshes(verts, faces)
return self.render.get_depth_map(cam_ids=[0, 2])
def visualize_alignment(self, data):
import vedo
import trimesh
if self.hps_type != 'pixie':
smpl_out = self.smpl_model(betas=data['betas'],
body_pose=data['body_pose'],
global_orient=data['global_orient'],
pose2rot=False)
smpl_verts = ((smpl_out.vertices + data['trans']) *
data['scale']).detach().cpu().numpy()[0]
else:
smpl_verts, _, _ = self.smpl_model(shape_params=data['betas'],
expression_params=data['exp'],
body_pose=data['body_pose'],
global_pose=data['global_orient'],
jaw_pose=data['jaw_pose'],
left_hand_pose=data['left_hand_pose'],
right_hand_pose=data['right_hand_pose'])
smpl_verts = ((smpl_verts + data['trans']) * data['scale']).detach().cpu().numpy()[0]
smpl_verts *= np.array([1.0, -1.0, -1.0])
faces = data['smpl_faces'][0].detach().cpu().numpy()
image_P = data['image']
image_F, image_B = self.render_normal(smpl_verts, faces)
# create plot
vp = vedo.Plotter(title="", size=(1500, 1500))
vis_list = []
image_F = (0.5 * (1.0 + image_F[0].permute(1, 2, 0).detach().cpu().numpy()) * 255.0)
image_B = (0.5 * (1.0 + image_B[0].permute(1, 2, 0).detach().cpu().numpy()) * 255.0)
image_P = (0.5 * (1.0 + image_P[0].permute(1, 2, 0).detach().cpu().numpy()) * 255.0)
vis_list.append(
vedo.Picture(image_P * 0.5 + image_F * 0.5).scale(2.0 / image_P.shape[0]).pos(
-1.0, -1.0, 1.0))
vis_list.append(vedo.Picture(image_F).scale(2.0 / image_F.shape[0]).pos(-1.0, -1.0, -0.5))
vis_list.append(vedo.Picture(image_B).scale(2.0 / image_B.shape[0]).pos(-1.0, -1.0, -1.0))
# create a mesh
mesh = trimesh.Trimesh(smpl_verts, faces, process=False)
mesh.visual.vertex_colors = [200, 200, 0]
vis_list.append(mesh)
vp.show(*vis_list, bg="white", axes=1, interactive=True)
if __name__ == '__main__':
cfg.merge_from_file("./configs/icon-filter.yaml")
cfg.merge_from_file('./lib/pymaf/configs/pymaf_config.yaml')
cfg_show_list = ['test_gpus', ['0'], 'mcube_res', 512, 'clean_mesh', False]
cfg.merge_from_list(cfg_show_list)
cfg.freeze()
device = torch.device('cuda:0')
dataset = SMPLDataset(
{
'image_dir': "./examples",
'has_det': True, # w/ or w/o detection
'hps_type': 'bev' # pymaf/pare/pixie/hybrik/bev
},
device)
for i in range(len(dataset)):
dataset.visualize_alignment(dataset[i])
|