File size: 9,388 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
from pytorch3d.structures import Meshes, Pointclouds
import torch.nn.functional as F
import torch
from lib.common.render_utils import face_vertices
from lib.dataset.mesh_util import SMPLX, barycentric_coordinates_of_projection
from kaolin.ops.mesh import check_sign, face_normals
from kaolin.metrics.trianglemesh import point_to_mesh_distance
from lib.dataset.Evaluator import point_mesh_distance
from lib.dataset.ECON_Evaluator import econ_point_mesh_distance
def distance_matrix(x, y=None, p = 2): #pairwise distance of vectors
y = x if type(y) == type(None) else y
n = x.size(0)
m = y.size(0)
d = x.size(1)
x = x.unsqueeze(1).expand(n, m, d)
y = y.unsqueeze(0).expand(n, m, d)
dist = torch.norm(x - y, dim=-1) if torch.__version__ >= '1.7.0' else torch.pow(x - y, p).sum(2)**(1/p)
return dist
class NN():
def __init__(self, X = None, Y = None, p = 2):
self.p = p
self.train(X, Y)
def train(self, X, Y):
self.train_pts = X
self.train_label = Y
def __call__(self, x):
return self.predict(x)
def predict(self, x):
if type(self.train_pts) == type(None) or type(self.train_label) == type(None):
name = self.__class__.__name__
raise RuntimeError(f"{name} wasn't trained. Need to execute {name}.train() first")
dist=[]
chunk=10000
for i in range(0,x.shape[0],chunk):
dist.append(distance_matrix(x[i:i+chunk], self.train_pts, self.p))
dist = torch.cat(dist, dim=0)
labels = torch.argmin(dist, dim=1)
return self.train_label[labels],labels
class PointFeat:
def __init__(self, verts, faces):
# verts [B, N_vert, 3]
# faces [B, N_face, 3]
# triangles [B, N_face, 3, 3]
self.Bsize = verts.shape[0]
self.mesh = Meshes(verts, faces)
self.device = verts.device
self.faces = faces
# SMPL has watertight mesh, but SMPL-X has two eyeballs and open mouth
# 1. remove eye_ball faces from SMPL-X: 9928-9383, 10474-9929
# 2. fill mouth holes with 30 more faces
if verts.shape[1] == 10475:
faces = faces[:, ~SMPLX().smplx_eyeball_fid_mask]
mouth_faces = (torch.as_tensor(
SMPLX().smplx_mouth_fid).unsqueeze(0).repeat(
self.Bsize, 1, 1).to(self.device))
self.faces = torch.cat([faces, mouth_faces], dim=1).long()
self.verts = verts
self.triangles = face_vertices(self.verts, self.faces)
def get_face_normals(self):
return face_normals(self.verts, self.faces)
def get_nearest_point(self,points):
# points [1, N, 3]
# find nearest point on mesh
#devices = points.device
points=points.squeeze(0)
nn_class=NN(X=self.verts.squeeze(0),Y=self.verts.squeeze(0),p=2)
nearest_points,nearest_points_ind=nn_class.predict(points)
# closest_triangles = torch.gather(
# self.triangles, 1,
# pts_ind[:, :, None, None].expand(-1, -1, 3, 3)).view(-1, 3, 3)
# bary_weights = barycentric_coordinates_of_projection(
# points.view(-1, 3), closest_triangles)
# bary_weights=F.normalize(bary_weights, p=2, dim=1)
# normals = face_normals(self.triangles)
# # make the lenght of the normal is 1
# normals = F.normalize(normals, p=2, dim=2)
# # get the normal of the closest triangle
# closest_normals = torch.gather(
# normals, 1,
# pts_ind[:, :, None].expand(-1, -1, 3)).view(-1, 3)
return nearest_points,nearest_points_ind # on cpu
def query_barycentirc_feats(self,points,feats):
# feats [B,N,C]
residues, pts_ind, _ = point_to_mesh_distance(points, self.triangles)
closest_triangles = torch.gather(
self.triangles, 1,
pts_ind[:, :, None, None].expand(-1, -1, 3, 3)).view(-1, 3, 3)
bary_weights = barycentric_coordinates_of_projection(
points.view(-1, 3), closest_triangles)
feat_arr=feats
feat_dim = feat_arr.shape[-1]
feat_tri = face_vertices(feat_arr, self.faces)
closest_feats = torch.gather( # query点距离最近的face的三个点的feature
feat_tri, 1,
pts_ind[:, :, None,
None].expand(-1, -1, 3,
feat_dim)).view(-1, 3, feat_dim)
pts_feats = ((closest_feats *
bary_weights[:, :, None]).sum(1).unsqueeze(0)) # 用barycentric weight加权求和
return pts_feats.view(self.Bsize,-1,feat_dim)
def query(self, points, feats={}):
# points [B, N, 3]
# feats {'feat_name': [B, N, C]}
del_keys = ["smpl_verts", "smpl_faces", "smpl_joint","smpl_sample_id"]
residues, pts_ind, _ = point_to_mesh_distance(points, self.triangles)
closest_triangles = torch.gather(
self.triangles, 1,
pts_ind[:, :, None, None].expand(-1, -1, 3, 3)).view(-1, 3, 3)
bary_weights = barycentric_coordinates_of_projection(
points.view(-1, 3), closest_triangles)
out_dict = {}
for feat_key in feats.keys():
if feat_key in del_keys:
continue
elif feats[feat_key] is not None:
feat_arr = feats[feat_key]
feat_dim = feat_arr.shape[-1]
feat_tri = face_vertices(feat_arr, self.faces)
closest_feats = torch.gather( # query点距离最近的face的三个点的feature
feat_tri, 1,
pts_ind[:, :, None,
None].expand(-1, -1, 3,
feat_dim)).view(-1, 3, feat_dim)
pts_feats = ((closest_feats *
bary_weights[:, :, None]).sum(1).unsqueeze(0)) # 用barycentric weight加权求和
out_dict[feat_key.split("_")[1]] = pts_feats
else:
out_dict[feat_key.split("_")[1]] = None
if "sdf" in out_dict.keys():
pts_dist = torch.sqrt(residues) / torch.sqrt(torch.tensor(3))
pts_signs = 2.0 * (
check_sign(self.verts, self.faces[0], points).float() - 0.5)
pts_sdf = (pts_dist * pts_signs).unsqueeze(-1)
out_dict["sdf"] = pts_sdf
if "vis" in out_dict.keys():
out_dict["vis"] = out_dict["vis"].ge(1e-1).float()
if "norm" in out_dict.keys():
pts_norm = out_dict["norm"] * torch.tensor([-1.0, 1.0, -1.0]).to(
self.device)
out_dict["norm"] = F.normalize(pts_norm, dim=2)
if "cmap" in out_dict.keys():
out_dict["cmap"] = out_dict["cmap"].clamp_(min=0.0, max=1.0)
for out_key in out_dict.keys():
out_dict[out_key] = out_dict[out_key].view(
self.Bsize, -1, out_dict[out_key].shape[-1])
return out_dict
class ECON_PointFeat:
def __init__(self, verts, faces):
# verts [B, N_vert, 3]
# faces [B, N_face, 3]
# triangles [B, N_face, 3, 3]
self.Bsize = verts.shape[0]
self.device = verts.device
self.faces = faces
# SMPL has watertight mesh, but SMPL-X has two eyeballs and open mouth
# 1. remove eye_ball faces from SMPL-X: 9928-9383, 10474-9929
# 2. fill mouth holes with 30 more faces
if verts.shape[1] == 10475:
faces = faces[:, ~SMPLX().smplx_eyeball_fid_mask]
mouth_faces = (
torch.as_tensor(SMPLX().smplx_mouth_fid).unsqueeze(0).repeat(self.Bsize, 1,
1).to(self.device)
)
self.faces = torch.cat([faces, mouth_faces], dim=1).long()
self.verts = verts.float()
self.triangles = face_vertices(self.verts, self.faces)
self.mesh = Meshes(self.verts, self.faces).to(self.device)
def query(self, points):
points = points.float()
residues, pts_ind = econ_point_mesh_distance(self.mesh, Pointclouds(points), weighted=False) # 这个和ECON的不太一样
closest_triangles = torch.gather(
self.triangles, 1, pts_ind[None, :, None, None].expand(-1, -1, 3, 3)
).view(-1, 3, 3)
bary_weights = barycentric_coordinates_of_projection(points.view(-1, 3), closest_triangles)
feat_normals = face_vertices(self.mesh.verts_normals_padded(), self.faces)
closest_normals = torch.gather(
feat_normals, 1, pts_ind[None, :, None, None].expand(-1, -1, 3, 3)
).view(-1, 3, 3)
shoot_verts = ((closest_triangles * bary_weights[:, :, None]).sum(1).unsqueeze(0))
pts2shoot_normals = points - shoot_verts
pts2shoot_normals = pts2shoot_normals / torch.norm(pts2shoot_normals, dim=-1, keepdim=True)
shoot_normals = ((closest_normals * bary_weights[:, :, None]).sum(1).unsqueeze(0))
shoot_normals = shoot_normals / torch.norm(shoot_normals, dim=-1, keepdim=True)
angles = (pts2shoot_normals * shoot_normals).sum(dim=-1).abs()
return (torch.sqrt(residues).unsqueeze(0), angles) |