File size: 11,633 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
# Copyright (c) Facebook, Inc. and its affiliates. All rights reserved.
import torch
import torch.nn as nn
import pytorch_lightning as pl
import torch.nn.functional as F
from torch.autograd import grad
# from fightingcv_attention.attention.SelfAttention import ScaledDotProductAttention
import numpy as np
class SDF2Density(pl.LightningModule):
def __init__(self):
super(SDF2Density, self).__init__()
# learnable parameters beta, with initial value 0.1
self.beta = nn.Parameter(torch.tensor(0.1))
def forward(self, sdf):
# use Laplace CDF to compute the probability
# temporally use sigmoid to represent laplace CDF
return 1.0/(self.beta+1e-6)*F.sigmoid(-sdf/(self.beta+1e-6))
class SDF2Occ(pl.LightningModule):
def __init__(self):
super(SDF2Occ, self).__init__()
# learnable parameters beta, with initial value 0.1
self.beta = nn.Parameter(torch.tensor(0.1))
def forward(self, sdf):
# use Laplace CDF to compute the probability
# temporally use sigmoid to represent laplace CDF
return F.sigmoid(-sdf/(self.beta+1e-6))
class DeformationMLP(pl.LightningModule):
def __init__(self,input_dim=64,output_dim=3,activation='LeakyReLU',name=None,opt=None):
super(DeformationMLP, self).__init__()
self.name = name
self.activation = activation
self.activate = nn.LeakyReLU(inplace=True)
# self.mlp = nn.Sequential(
# nn.Conv1d(input_dim+8+1+3, 64, 1),
# nn.LeakyReLU(inplace=True),
# nn.Conv1d(64, output_dim, 1),
# )
channels=[input_dim+8+1+3,128, 64, output_dim]
self.deform_mlp=MLP(filter_channels=channels,
name="if",
res_layers=opt.res_layers,
norm=opt.norm_mlp,
last_op=None) # occupancy
smplx_dim = 10475
k=8
self.per_pt_code = nn.Embedding(smplx_dim,k)
def forward(self, feature,smpl_vis,pts_id, xyz):
'''
feature may include multiple view inputs
args:
feature: [B, C_in, N]
return:
[B, C_out, N] prediction
'''
y = feature
e_code=self.per_pt_code(pts_id).permute(0,2,1) # a code that distinguishes each point on different parts of the body
y=torch.cat([y,xyz,smpl_vis,e_code],1)
y = self.deform_mlp(y)
return y
class MLP(pl.LightningModule):
def __init__(self,
filter_channels,
name=None,
res_layers=[],
norm='group',
last_op=None):
super(MLP, self).__init__()
self.filters = nn.ModuleList()
self.norms = nn.ModuleList()
self.res_layers = res_layers
self.norm = norm
self.last_op = last_op
self.name = name
self.activate = nn.LeakyReLU(inplace=True)
for l in range(0, len(filter_channels) - 1):
if l in self.res_layers:
self.filters.append(
nn.Conv1d(filter_channels[l] + filter_channels[0],
filter_channels[l + 1], 1))
else:
self.filters.append(
nn.Conv1d(filter_channels[l], filter_channels[l + 1], 1))
if l != len(filter_channels) - 2:
if norm == 'group':
self.norms.append(nn.GroupNorm(32, filter_channels[l + 1]))
elif norm == 'batch':
self.norms.append(nn.BatchNorm1d(filter_channels[l + 1]))
elif norm == 'instance':
self.norms.append(nn.InstanceNorm1d(filter_channels[l +
1]))
elif norm == 'weight':
self.filters[l] = nn.utils.weight_norm(self.filters[l],
name='weight')
# print(self.filters[l].weight_g.size(),
# self.filters[l].weight_v.size())
def forward(self, feature):
'''
feature may include multiple view inputs
args:
feature: [B, C_in, N]
return:
[B, C_out, N] prediction
'''
y = feature
tmpy = feature
for i, f in enumerate(self.filters):
y = f(y if i not in self.res_layers else torch.cat([y, tmpy], 1))
if i != len(self.filters) - 1:
if self.norm not in ['batch', 'group', 'instance']:
y = self.activate(y)
else:
y = self.activate(self.norms[i](y))
if self.last_op is not None:
y = self.last_op(y)
return y
# Positional encoding (section 5.1)
class Embedder(pl.LightningModule):
def __init__(self, **kwargs):
self.kwargs = kwargs
self.create_embedding_fn()
def create_embedding_fn(self):
embed_fns = []
d = self.kwargs['input_dims']
out_dim = 0
if self.kwargs['include_input']:
embed_fns.append(lambda x : x)
out_dim += d
max_freq = self.kwargs['max_freq_log2']
N_freqs = self.kwargs['num_freqs']
if self.kwargs['log_sampling']:
freq_bands = 2.**torch.linspace(0., max_freq, steps=N_freqs)
else:
freq_bands = torch.linspace(2.**0., 2.**max_freq, steps=N_freqs)
for freq in freq_bands:
for p_fn in self.kwargs['periodic_fns']:
embed_fns.append(lambda x, p_fn=p_fn, freq=freq : p_fn(x * freq))
out_dim += d
self.embed_fns = embed_fns
self.out_dim = out_dim
def embed(self, inputs):
return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
def get_embedder(multires=6, i=0):
if i == -1:
return nn.Identity(), 3
embed_kwargs = {
'include_input' : True,
'input_dims' : 3,
'max_freq_log2' : multires-1,
'num_freqs' : multires,
'log_sampling' : True,
'periodic_fns' : [torch.sin, torch.cos],
}
embedder_obj = Embedder(**embed_kwargs)
embed = lambda x, eo=embedder_obj : eo.embed(x)
return embed, embedder_obj.out_dim
# Transformer encoder layer
# uses Embedder to add positional encoding to input points
# uses query points as query, deformed points as key, point features as value for attention
class TransformerEncoderLayer(pl.LightningModule):
def __init__(self, d_model=256, skips=4, multires=6, num_mlp_layers=8, dropout=0.1, opt=None):
super(TransformerEncoderLayer, self).__init__()
embed_fn, input_ch = get_embedder(multires=multires)
self.skips=skips
self.dropout = dropout
D=num_mlp_layers
self.positional_encoding = embed_fn
self.d_model = d_model
triplane_dim=64
opt.mlp_dim[0]=triplane_dim+6+8
opt.mlp_dim_color[0]=triplane_dim+6+8
self.geo_mlp=MLP(filter_channels=opt.mlp_dim,
name="if",
res_layers=opt.res_layers,
norm=opt.norm_mlp,
last_op=nn.Sigmoid()) # occupancy
self.color_mlp=MLP(filter_channels=opt.mlp_dim_color,
name="color_if",
res_layers=opt.res_layers,
norm=opt.norm_mlp,
last_op=nn.Tanh()) # color
self.softmax = nn.Softmax(dim=-1)
def forward(self,query_points,key_points,point_features,smpl_feat,training=True,type='shape'):
# Q=self.positional_encoding(query_points) #[B,N,39]
# K=self.positional_encoding(key_points) #[B,N',39]
# V=point_features.permute(0,2,1) #[B,N',192]
# t=0.1
# #attn_output, attn_output_weights = self.attention(Q.permute(1,0,2), K.permute(1,0,2), V.permute(1,0,2)) #[B,N,192]
# attn_output_weights = torch.bmm(Q, K.transpose(1, 2)) #[B,N,N']
# attn_output_weights = self.softmax(attn_output_weights/t) #[B,N,N']
# # drop out
# attn_output_weights = F.dropout(attn_output_weights, p=self.dropout, training=True)
# # master feature
# attn_output = torch.bmm(attn_output_weights, V) #[B,N,192]
attn_output=point_features # [B,N,192] bary centric interpolation
feature=torch.cat([attn_output,smpl_feat],dim=1)
if type=='shape':
h=feature
h=self.geo_mlp(h) # [B,1,N]
return h
elif type=='color':
#f=self.head(feature) #[B,N,512]
h=feature
h=self.color_mlp(h) # [B,3,N]
return h
elif type=='shape_color':
h_s=feature
h_c=feature
h_s=self.geo_mlp(h_s) # [B,1,N]
h_c=self.color_mlp(h_c) # [B,3,N]
return h_s,h_c
class Swish(pl.LightningModule):
def __init__(self):
super(Swish, self).__init__()
def forward(self, x):
x = x * F.sigmoid(x)
return x
# # Import pytorch modules
# import torch
# import torch.nn as nn
# import torch.nn.functional as F
# Define positional encoding class
class PositionalEncoding(nn.Module):
def __init__(self, d_model, max_len=1000):
super(PositionalEncoding, self).__init__()
# Compute the positional encodings once in log space.
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2) *
-(math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:, :x.size(1)]
return x
# # Define model parameters
# d_model = 256 # output size of MLP
# nhead = 8 # number of attention heads
# dim_feedforward = 512 # hidden size of MLP
# num_layers = 2 # number of MLP layers
# num_frequencies = 6 # number of frequencies for positional encoding
# dropout = 0.1 # dropout rate
# # Define model components
# pos_encoder = PositionalEncoding(d_model, num_frequencies) # positional encoding layer
# encoder_layer = nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout) # transformer encoder layer
# encoder = nn.TransformerEncoder(encoder_layer, num_layers) # transformer encoder
# mlp_geo = nn.Sequential(nn.Linear(3, d_model), nn.ReLU(), nn.Linear(d_model, d_model)) # MLP for geometry
# mlp_alb = nn.Sequential(nn.Linear(3, d_model), nn.ReLU(), nn.Linear(d_model, d_model)) # MLP for albedo
# head_geo = nn.Sequential(nn.Linear(d_model, d_model), nn.ReLU(), nn.Linear(d_model, 3)) # geometry head
# head_alb = nn.Sequential(nn.Linear(d_model, d_model), nn.ReLU(), nn.Linear(d_model, 3), nn.Sigmoid()) # albedo head
# # Define input tensors
# # deformed body points: (batch_size, num_points, 3)
# x = torch.randn(batch_size, num_points, 3)
# # query point positions: (batch_size, num_queries, 3)
# y = torch.randn(batch_size, num_queries, 3)
# # Map both d
|