File size: 17,052 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 |
"""
This file contains functions that are used to perform data augmentation.
"""
from turtle import reset
import cv2
import io
import torch
import numpy as np
import scipy.misc
from PIL import Image
from rembg.bg import remove
from torchvision.models import detection
from lib.pymaf.core import constants
from lib.pymaf.utils.streamer import aug_matrix
from lib.common.cloth_extraction import load_segmentation
from torchvision import transforms
def load_img(img_file):
img = cv2.imread(img_file, cv2.IMREAD_UNCHANGED)
if len(img.shape) == 2:
img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
if not img_file.endswith("png"):
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
else:
img = cv2.cvtColor(img, cv2.COLOR_RGBA2BGR)
return img
def get_bbox(img, det):
input = np.float32(img)
input = (input / 255.0 -
(0.5, 0.5, 0.5)) / (0.5, 0.5, 0.5) # TO [-1.0, 1.0]
input = input.transpose(2, 0, 1) # TO [3 x H x W]
bboxes, probs = det(torch.from_numpy(input).float().unsqueeze(0))
probs = probs.unsqueeze(3)
bboxes = (bboxes * probs).sum(dim=1, keepdim=True) / probs.sum(
dim=1, keepdim=True)
bbox = bboxes[0, 0, 0].cpu().numpy()
return bbox
def get_transformer(input_res):
image_to_tensor = transforms.Compose([
transforms.Resize(input_res),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
mask_to_tensor = transforms.Compose([
transforms.Resize(input_res),
transforms.ToTensor(),
transforms.Normalize((0.0, ), (1.0, ))
])
image_to_pymaf_tensor = transforms.Compose([
transforms.Resize(size=224),
transforms.Normalize(mean=constants.IMG_NORM_MEAN,
std=constants.IMG_NORM_STD)
])
image_to_pixie_tensor = transforms.Compose([transforms.Resize(224)])
def image_to_hybrik_tensor(img):
# mean
img[0].add_(-0.406)
img[1].add_(-0.457)
img[2].add_(-0.480)
# std
img[0].div_(0.225)
img[1].div_(0.224)
img[2].div_(0.229)
return img
return [
image_to_tensor, mask_to_tensor, image_to_pymaf_tensor,
image_to_pixie_tensor, image_to_hybrik_tensor
]
def process_image(img_file,
hps_type,
input_res=512,
device=None,
seg_path=None):
"""Read image, do preprocessing and possibly crop it according to the bounding box.
If there are bounding box annotations, use them to crop the image.
If no bounding box is specified but openpose detections are available, use them to get the bounding box.
"""
[
image_to_tensor, mask_to_tensor, image_to_pymaf_tensor,
image_to_pixie_tensor, image_to_hybrik_tensor
] = get_transformer(input_res)
img_ori = load_img(img_file)
in_height, in_width, _ = img_ori.shape
M = aug_matrix(in_width, in_height, input_res * 2, input_res * 2)
# from rectangle to square
img_for_crop = cv2.warpAffine(img_ori,
M[0:2, :], (input_res * 2, input_res * 2),
flags=cv2.INTER_CUBIC)
# detection for bbox
detector = detection.maskrcnn_resnet50_fpn(pretrained=True)
detector.eval()
predictions = detector(
[torch.from_numpy(img_for_crop).permute(2, 0, 1) / 255.])[0]
human_ids = torch.logical_and(
predictions["labels"] == 1,
predictions["scores"] == predictions["scores"].max()).nonzero().squeeze(1)
bbox = predictions["boxes"][human_ids, :].flatten().detach().cpu().numpy()
width = bbox[2] - bbox[0]
height = bbox[3] - bbox[1]
center = np.array([(bbox[0] + bbox[2]) / 2.0,
(bbox[1] + bbox[3]) / 2.0])
scale = max(height, width) / 180
if hps_type == 'hybrik':
img_np = crop_for_hybrik(img_for_crop, center,
np.array([scale * 180, scale * 180]))
else:
img_np, cropping_parameters = crop(img_for_crop, center, scale,
(input_res, input_res))
with torch.no_grad():
buf = io.BytesIO()
Image.fromarray(img_np).save(buf, format='png')
img_pil = Image.open(io.BytesIO(remove(
buf.getvalue()))).convert("RGBA")
# for icon
img_rgb = image_to_tensor(img_pil.convert("RGB"))
img_mask = torch.tensor(1.0) - (mask_to_tensor(img_pil.split()[-1]) <
torch.tensor(0.5)).float()
img_tensor = img_rgb * img_mask
# for hps
img_hps = img_np.astype(np.float32) / 255.
img_hps = torch.from_numpy(img_hps).permute(2, 0, 1)
if hps_type == 'bev':
img_hps = img_np[:, :, [2, 1, 0]]
elif hps_type == 'hybrik':
img_hps = image_to_hybrik_tensor(img_hps).unsqueeze(0).to(device)
elif hps_type != 'pixie':
img_hps = image_to_pymaf_tensor(img_hps).unsqueeze(0).to(device)
else:
img_hps = image_to_pixie_tensor(img_hps).unsqueeze(0).to(device)
# uncrop params
uncrop_param = {
'center': center,
'scale': scale,
'ori_shape': img_ori.shape,
'box_shape': img_np.shape,
'crop_shape': img_for_crop.shape,
'M': M
}
if not (seg_path is None):
segmentations = load_segmentation(seg_path, (in_height, in_width))
seg_coord_normalized = []
for seg in segmentations:
coord_normalized = []
for xy in seg['coordinates']:
xy_h = np.vstack((xy[:, 0], xy[:, 1], np.ones(len(xy)))).T
warped_indeces = M[0:2, :] @ xy_h[:, :, None]
warped_indeces = np.array(warped_indeces).astype(int)
warped_indeces.resize((warped_indeces.shape[:2]))
# cropped_indeces = crop_segmentation(warped_indeces, center, scale, (input_res, input_res), img_np.shape)
cropped_indeces = crop_segmentation(warped_indeces,
(input_res, input_res),
cropping_parameters)
indices = np.vstack(
(cropped_indeces[:, 0], cropped_indeces[:, 1])).T
# Convert to NDC coordinates
seg_cropped_normalized = 2 * (indices / input_res) - 1
# Don't know why we need to divide by 50 but it works ¯\_(ツ)_/¯ (probably some scaling factor somewhere)
# Divide only by 45 on the horizontal axis to take the curve of the human body into account
seg_cropped_normalized[:,
0] = (1 /
40) * seg_cropped_normalized[:, 0]
seg_cropped_normalized[:,
1] = (1 /
50) * seg_cropped_normalized[:, 1]
coord_normalized.append(seg_cropped_normalized)
seg['coord_normalized'] = coord_normalized
seg_coord_normalized.append(seg)
return img_tensor, img_hps, img_ori, img_mask, uncrop_param, seg_coord_normalized
return img_tensor, img_hps, img_ori, img_mask, uncrop_param
def get_transform(center, scale, res):
"""Generate transformation matrix."""
h = 200 * scale
t = np.zeros((3, 3))
t[0, 0] = float(res[1]) / h
t[1, 1] = float(res[0]) / h
t[0, 2] = res[1] * (-float(center[0]) / h + .5)
t[1, 2] = res[0] * (-float(center[1]) / h + .5)
t[2, 2] = 1
return t
def transform(pt, center, scale, res, invert=0):
"""Transform pixel location to different reference."""
t = get_transform(center, scale, res)
if invert:
t = np.linalg.inv(t)
new_pt = np.array([pt[0] - 1, pt[1] - 1, 1.]).T
new_pt = np.dot(t, new_pt)
return np.around(new_pt[:2]).astype(np.int16)
def crop(img, center, scale, res):
"""Crop image according to the supplied bounding box."""
# Upper left point
ul = np.array(transform([0, 0], center, scale, res, invert=1))
# Bottom right point
br = np.array(transform(res, center, scale, res, invert=1))
new_shape = [br[1] - ul[1], br[0] - ul[0]]
if len(img.shape) > 2:
new_shape += [img.shape[2]]
new_img = np.zeros(new_shape)
# Range to fill new array
new_x = max(0, -ul[0]), min(br[0], len(img[0])) - ul[0]
new_y = max(0, -ul[1]), min(br[1], len(img)) - ul[1]
# Range to sample from original image
old_x = max(0, ul[0]), min(len(img[0]), br[0])
old_y = max(0, ul[1]), min(len(img), br[1])
new_img[new_y[0]:new_y[1], new_x[0]:new_x[1]] = img[old_y[0]:old_y[1],
old_x[0]:old_x[1]]
if len(img.shape) == 2:
new_img = np.array(Image.fromarray(new_img).resize(res))
else:
new_img = np.array(
Image.fromarray(new_img.astype(np.uint8)).resize(res))
return new_img, (old_x, new_x, old_y, new_y, new_shape)
def crop_segmentation(org_coord, res, cropping_parameters):
old_x, new_x, old_y, new_y, new_shape = cropping_parameters
new_coord = np.zeros((org_coord.shape))
new_coord[:, 0] = new_x[0] + (org_coord[:, 0] - old_x[0])
new_coord[:, 1] = new_y[0] + (org_coord[:, 1] - old_y[0])
new_coord[:, 0] = res[0] * (new_coord[:, 0] / new_shape[1])
new_coord[:, 1] = res[1] * (new_coord[:, 1] / new_shape[0])
return new_coord
def crop_for_hybrik(img, center, scale):
inp_h, inp_w = (256, 256)
trans = get_affine_transform(center, scale, 0, [inp_w, inp_h])
new_img = cv2.warpAffine(img,
trans, (int(inp_w), int(inp_h)),
flags=cv2.INTER_LINEAR)
return new_img
def get_affine_transform(center,
scale,
rot,
output_size,
shift=np.array([0, 0], dtype=np.float32),
inv=0):
def get_dir(src_point, rot_rad):
"""Rotate the point by `rot_rad` degree."""
sn, cs = np.sin(rot_rad), np.cos(rot_rad)
src_result = [0, 0]
src_result[0] = src_point[0] * cs - src_point[1] * sn
src_result[1] = src_point[0] * sn + src_point[1] * cs
return src_result
def get_3rd_point(a, b):
"""Return vector c that perpendicular to (a - b)."""
direct = a - b
return b + np.array([-direct[1], direct[0]], dtype=np.float32)
if not isinstance(scale, np.ndarray) and not isinstance(scale, list):
scale = np.array([scale, scale])
scale_tmp = scale
src_w = scale_tmp[0]
dst_w = output_size[0]
dst_h = output_size[1]
rot_rad = np.pi * rot / 180
src_dir = get_dir([0, src_w * -0.5], rot_rad)
dst_dir = np.array([0, dst_w * -0.5], np.float32)
src = np.zeros((3, 2), dtype=np.float32)
dst = np.zeros((3, 2), dtype=np.float32)
src[0, :] = center + scale_tmp * shift
src[1, :] = center + src_dir + scale_tmp * shift
dst[0, :] = [dst_w * 0.5, dst_h * 0.5]
dst[1, :] = np.array([dst_w * 0.5, dst_h * 0.5]) + dst_dir
src[2:, :] = get_3rd_point(src[0, :], src[1, :])
dst[2:, :] = get_3rd_point(dst[0, :], dst[1, :])
if inv:
trans = cv2.getAffineTransform(np.float32(dst), np.float32(src))
else:
trans = cv2.getAffineTransform(np.float32(src), np.float32(dst))
return trans
def corner_align(ul, br):
if ul[1] - ul[0] != br[1] - br[0]:
ul[1] = ul[0] + br[1] - br[0]
return ul, br
def uncrop(img, center, scale, orig_shape):
"""'Undo' the image cropping/resizing.
This function is used when evaluating mask/part segmentation.
"""
res = img.shape[:2]
# Upper left point
ul = np.array(transform([0, 0], center, scale, res, invert=1))
# Bottom right point
br = np.array(transform(res, center, scale, res, invert=1))
# quick fix
ul, br = corner_align(ul, br)
# size of cropped image
crop_shape = [br[1] - ul[1], br[0] - ul[0]]
new_img = np.zeros(orig_shape, dtype=np.uint8)
# Range to fill new array
new_x = max(0, -ul[0]), min(br[0], orig_shape[1]) - ul[0]
new_y = max(0, -ul[1]), min(br[1], orig_shape[0]) - ul[1]
# Range to sample from original image
old_x = max(0, ul[0]), min(orig_shape[1], br[0])
old_y = max(0, ul[1]), min(orig_shape[0], br[1])
img = np.array(Image.fromarray(img.astype(np.uint8)).resize(crop_shape))
new_img[old_y[0]:old_y[1], old_x[0]:old_x[1]] = img[new_y[0]:new_y[1],
new_x[0]:new_x[1]]
return new_img
def rot_aa(aa, rot):
"""Rotate axis angle parameters."""
# pose parameters
R = np.array([[np.cos(np.deg2rad(-rot)), -np.sin(np.deg2rad(-rot)), 0],
[np.sin(np.deg2rad(-rot)),
np.cos(np.deg2rad(-rot)), 0], [0, 0, 1]])
# find the rotation of the body in camera frame
per_rdg, _ = cv2.Rodrigues(aa)
# apply the global rotation to the global orientation
resrot, _ = cv2.Rodrigues(np.dot(R, per_rdg))
aa = (resrot.T)[0]
return aa
def flip_img(img):
"""Flip rgb images or masks.
channels come last, e.g. (256,256,3).
"""
img = np.fliplr(img)
return img
def flip_kp(kp, is_smpl=False):
"""Flip keypoints."""
if len(kp) == 24:
if is_smpl:
flipped_parts = constants.SMPL_JOINTS_FLIP_PERM
else:
flipped_parts = constants.J24_FLIP_PERM
elif len(kp) == 49:
if is_smpl:
flipped_parts = constants.SMPL_J49_FLIP_PERM
else:
flipped_parts = constants.J49_FLIP_PERM
kp = kp[flipped_parts]
kp[:, 0] = -kp[:, 0]
return kp
def flip_pose(pose):
"""Flip pose.
The flipping is based on SMPL parameters.
"""
flipped_parts = constants.SMPL_POSE_FLIP_PERM
pose = pose[flipped_parts]
# we also negate the second and the third dimension of the axis-angle
pose[1::3] = -pose[1::3]
pose[2::3] = -pose[2::3]
return pose
def normalize_2d_kp(kp_2d, crop_size=224, inv=False):
# Normalize keypoints between -1, 1
if not inv:
ratio = 1.0 / crop_size
kp_2d = 2.0 * kp_2d * ratio - 1.0
else:
ratio = 1.0 / crop_size
kp_2d = (kp_2d + 1.0) / (2 * ratio)
return kp_2d
def generate_heatmap(joints, heatmap_size, sigma=1, joints_vis=None):
'''
param joints: [num_joints, 3]
param joints_vis: [num_joints, 3]
return: target, target_weight(1: visible, 0: invisible)
'''
num_joints = joints.shape[0]
device = joints.device
cur_device = torch.device(device.type, device.index)
if not hasattr(heatmap_size, '__len__'):
# width height
heatmap_size = [heatmap_size, heatmap_size]
assert len(heatmap_size) == 2
target_weight = np.ones((num_joints, 1), dtype=np.float32)
if joints_vis is not None:
target_weight[:, 0] = joints_vis[:, 0]
target = torch.zeros((num_joints, heatmap_size[1], heatmap_size[0]),
dtype=torch.float32,
device=cur_device)
tmp_size = sigma * 3
for joint_id in range(num_joints):
mu_x = int(joints[joint_id][0] * heatmap_size[0] + 0.5)
mu_y = int(joints[joint_id][1] * heatmap_size[1] + 0.5)
# Check that any part of the gaussian is in-bounds
ul = [int(mu_x - tmp_size), int(mu_y - tmp_size)]
br = [int(mu_x + tmp_size + 1), int(mu_y + tmp_size + 1)]
if ul[0] >= heatmap_size[0] or ul[1] >= heatmap_size[1] \
or br[0] < 0 or br[1] < 0:
# If not, just return the image as is
target_weight[joint_id] = 0
continue
# # Generate gaussian
size = 2 * tmp_size + 1
# x = np.arange(0, size, 1, np.float32)
# y = x[:, np.newaxis]
# x0 = y0 = size // 2
# # The gaussian is not normalized, we want the center value to equal 1
# g = np.exp(- ((x - x0) ** 2 + (y - y0) ** 2) / (2 * sigma ** 2))
# g = torch.from_numpy(g.astype(np.float32))
x = torch.arange(0, size, dtype=torch.float32, device=cur_device)
y = x.unsqueeze(-1)
x0 = y0 = size // 2
# The gaussian is not normalized, we want the center value to equal 1
g = torch.exp(-((x - x0)**2 + (y - y0)**2) / (2 * sigma**2))
# Usable gaussian range
g_x = max(0, -ul[0]), min(br[0], heatmap_size[0]) - ul[0]
g_y = max(0, -ul[1]), min(br[1], heatmap_size[1]) - ul[1]
# Image range
img_x = max(0, ul[0]), min(br[0], heatmap_size[0])
img_y = max(0, ul[1]), min(br[1], heatmap_size[1])
v = target_weight[joint_id]
if v > 0.5:
target[joint_id][img_y[0]:img_y[1], img_x[0]:img_x[1]] = \
g[g_y[0]:g_y[1], g_x[0]:g_x[1]]
return target, target_weight
|