File size: 14,955 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
from os import sep
from pickle import TRUE
import torch
import torch.nn as nn
import torch.nn.functional as F
from functools import partial
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
from timm.models.registry import register_model
from timm.models.vision_transformer import _cfg
import numpy as np
__all__ = [
'p2t_tiny', 'p2t_small', 'p2t_base', 'p2t_large'
]
class IRB(nn.Module):
def __init__(self, in_features, hidden_features=None, out_features=None, ksize=3, act_layer=nn.Hardswish, drop=0.):
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Conv2d(in_features, hidden_features, 1, 1, 0)
self.act = act_layer()
self.conv = nn.Conv2d(hidden_features, hidden_features, kernel_size=ksize, padding=ksize//2, stride=1, groups=hidden_features)
self.fc2 = nn.Conv2d(hidden_features, out_features, 1, 1, 0)
self.drop = nn.Dropout(drop)
def forward(self, x, H, W):
B, N, C = x.shape
x = x.permute(0,2,1).reshape(B, C, H, W)
x = self.fc1(x)
x = self.act(x)
x = self.conv(x)
x = self.act(x)
x = self.fc2(x)
return x.reshape(B, C, -1).permute(0,2,1)
class PoolingAttention(nn.Module):
def __init__(self, dim, num_heads=2, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.,
pool_ratios=[1,2,3,6]):
super().__init__()
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
self.dim = dim
self.num_heads = num_heads
self.num_elements = np.array([t*t for t in pool_ratios]).sum()
head_dim = dim // num_heads
self.scale = qk_scale or head_dim ** -0.5
self.q = nn.Sequential(nn.Linear(dim, dim, bias=qkv_bias))
self.kv = nn.Sequential(nn.Linear(dim, dim * 2, bias=qkv_bias))
self.attn_drop = nn.Dropout(attn_drop)
self.proj = nn.Linear(dim, dim)
self.proj_drop = nn.Dropout(proj_drop)
self.pool_ratios = pool_ratios
self.pools = nn.ModuleList()
self.norm = nn.LayerNorm(dim)
def forward(self, x, H, W, d_convs=None):
B, N, C = x.shape
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
pools = []
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
for (pool_ratio, l) in zip(self.pool_ratios, d_convs):
pool = F.adaptive_avg_pool2d(x_, (round(H/pool_ratio), round(W/pool_ratio)))
pool = pool + l(pool) # fix backward bug in higher torch versions when training
pools.append(pool.view(B, C, -1))
pools = torch.cat(pools, dim=2)
pools = self.norm(pools.permute(0,2,1))
kv = self.kv(pools).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
k, v = kv[0], kv[1]
attn = (q @ k.transpose(-2, -1)) * self.scale
attn = attn.softmax(dim=-1)
x = (attn @ v)
x = x.transpose(1,2).contiguous().reshape(B, N, C)
x = self.proj(x)
return x
class Block(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, pool_ratios=[12,16,20,24]):
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = PoolingAttention(
dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
attn_drop=attn_drop, proj_drop=drop, pool_ratios=pool_ratios)
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
self.norm2 = norm_layer(dim)
self.mlp = IRB(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=nn.Hardswish, drop=drop, ksize=3)
def forward(self, x, H, W, d_convs=None):
x = x + self.drop_path(self.attn(self.norm1(x), H, W, d_convs=d_convs))
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
return x
class PatchEmbed(nn.Module):
""" (Overlapped) Image to Patch Embedding
"""
def __init__(self, img_size=224, patch_size=16, kernel_size=3, in_chans=3, embed_dim=768, overlap=True):
super().__init__()
img_size = to_2tuple(img_size)
patch_size = to_2tuple(patch_size)
self.img_size = img_size
self.patch_size = patch_size
assert img_size[0] % patch_size[0] == 0 and img_size[1] % patch_size[1] == 0, \
f"img_size {img_size} should be divided by patch_size {patch_size}."
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
self.num_patches = self.H * self.W
if not overlap:
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
else:
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=kernel_size, stride=patch_size, padding=kernel_size//2)
self.norm = nn.LayerNorm(embed_dim)
def forward(self, x):
x = self.proj(x)
_, _, H, W = x.shape
x = x.flatten(2).transpose(1, 2)
x = self.norm(x)
return x, (H, W)
class PyramidPoolingTransformer(nn.Module):
def __init__(self, img_size=512, patch_size=2, in_chans=3, num_classes=1000, embed_dims=[64, 256, 320, 512],
num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True, qk_scale=None, drop_rate=0.,
attn_drop_rate=0., drop_path_rate=0.1, norm_layer=partial(nn.LayerNorm, eps=1e-6),
depths=[2, 2, 9, 3]): #
super().__init__()
self.num_classes = num_classes
self.depths = depths
self.embed_dims = embed_dims
# pyramid pooling ratios for each stage
pool_ratios = [[12,16,20,24], [6,8,10,12], [3,4,5,6], [1,2,3,4]]
self.patch_embed1 = PatchEmbed(img_size=img_size, patch_size=4, kernel_size=7, in_chans=in_chans,
embed_dim=embed_dims[0], overlap=True)
self.patch_embed2 = PatchEmbed(img_size=img_size // 4, patch_size=2, in_chans=embed_dims[0],
embed_dim=embed_dims[1], overlap=True)
self.patch_embed3 = PatchEmbed(img_size=img_size // 8, patch_size=2, in_chans=embed_dims[1],
embed_dim=embed_dims[2], overlap=True)
self.patch_embed4 = PatchEmbed(img_size=img_size // 16, patch_size=2, in_chans=embed_dims[2],
embed_dim=embed_dims[3], overlap=True)
self.d_convs1 = nn.ModuleList([nn.Conv2d(embed_dims[0], embed_dims[0], kernel_size=3, stride=1, padding=1, groups=embed_dims[0]) for temp in pool_ratios[0]])
self.d_convs2 = nn.ModuleList([nn.Conv2d(embed_dims[1], embed_dims[1], kernel_size=3, stride=1, padding=1, groups=embed_dims[1]) for temp in pool_ratios[1]])
self.d_convs3 = nn.ModuleList([nn.Conv2d(embed_dims[2], embed_dims[2], kernel_size=3, stride=1, padding=1, groups=embed_dims[2]) for temp in pool_ratios[2]])
self.d_convs4 = nn.ModuleList([nn.Conv2d(embed_dims[3], embed_dims[3], kernel_size=3, stride=1, padding=1, groups=embed_dims[3]) for temp in pool_ratios[3]])
# transformer encoder
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
cur = 0
ksize = 3
self.block1 = nn.ModuleList([Block(
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, pool_ratios=pool_ratios[0])
for i in range(depths[0])])
cur += depths[0]
self.block2 = nn.ModuleList([Block(
dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, pool_ratios=pool_ratios[1])
for i in range(depths[1])])
cur += depths[1]
self.block3 = nn.ModuleList([Block(
dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, pool_ratios=pool_ratios[2])
for i in range(depths[2])])
cur += depths[2]
self.block4 = nn.ModuleList([Block(
dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer, pool_ratios=pool_ratios[3])
for i in range(depths[3])])
# classification head
self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
self.gap = nn.AdaptiveAvgPool1d(1)
self.apply(self._init_weights)
#print(self)
def reset_drop_path(self, drop_path_rate):
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
cur = 0
for i in range(self.depths[0]):
self.block1[i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[0]
for i in range(self.depths[1]):
self.block2[i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[1]
for i in range(self.depths[2]):
self.block3[i].drop_path.drop_prob = dpr[cur + i]
cur += self.depths[2]
for i in range(self.depths[3]):
self.block4[i].drop_path.drop_prob = dpr[cur + i]
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
@torch.jit.ignore
def no_weight_decay(self):
# return {'pos_embed', 'cls_token'} # has pos_embed may be better
return {'cls_token'}
def get_classifier(self):
return self.head
def reset_classifier(self, num_classes, global_pool=''):
self.num_classes = num_classes
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
def forward_features(self, x):
B = x.shape[0]
# stage 1
x, (H, W) = self.patch_embed1(x)
for idx, blk in enumerate(self.block1):
x = blk(x, H, W, self.d_convs1)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2)
# stage 2
x, (H, W) = self.patch_embed2(x)
for idx, blk in enumerate(self.block2):
x = blk(x, H, W, self.d_convs2)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2)
# # stage 3
# x, (H, W) = self.patch_embed3(x)
# for idx, blk in enumerate(self.block3):
# x = blk(x, H, W, self.d_convs3)
# x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2)
# # stage 4
# x, (H, W) = self.patch_embed4(x)
# for idx, blk in enumerate(self.block4):
# x = blk(x, H, W, self.d_convs4)
return x
def forward_features_for_fpn(self, x):
outs = []
B = x.shape[0]
# stage 1
x, (H, W) = self.patch_embed1(x)
for idx, blk in enumerate(self.block1):
x = blk(x, H, W, self.d_convs1)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2)
outs.append(x)
# stage 2
x, (H, W) = self.patch_embed2(x)
for idx, blk in enumerate(self.block2):
x = blk(x, H, W, self.d_convs2)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2)
outs.append(x)
x, (H, W) = self.patch_embed3(x)
for idx, blk in enumerate(self.block3):
x = blk(x, H, W, self.d_convs3)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2)
outs.append(x)
# stage 4
x, (H, W) = self.patch_embed4(x)
for idx, blk in enumerate(self.block4):
x = blk(x, H, W, self.d_convs4)
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2)
outs.append(x)
return outs
def forward(self, x):
x = self.forward_features(x)
# x = torch.mean(x, dim=1)
# x = self.head(x)
return x
def forward_for_fpn(self, x):
return self.forward_features_for_fpn(x)
def _conv_filter(state_dict, patch_size=16):
""" convert patch embedding weight from manual patchify + linear proj to conv"""
out_dict = {}
for k, v in state_dict.items():
if 'patch_embed.proj.weight' in k:
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
out_dict[k] = v
return out_dict
@register_model
def p2t_tiny(pretrained=False, **kwargs):
model = PyramidPoolingTransformer(
patch_size=4, embed_dims=[48, 96, 240, 384], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 6, 3],
**kwargs)
model.default_cfg = _cfg()
return model
@register_model
def p2t_small(pretrained=True, **kwargs):
model = PyramidPoolingTransformer(
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 9, 3], **kwargs)
model.default_cfg = _cfg()
return model
@register_model
def p2t_base(pretrained=False, **kwargs):
model = PyramidPoolingTransformer(
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3],
**kwargs)
model.default_cfg = _cfg()
return model
@register_model
def p2t_medium(pretrained=False, **kwargs):
model = PyramidPoolingTransformer(
patch_size=4, embed_dims=[64, 128, 384, 512], num_heads=[1, 2, 6, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 15, 3],
**kwargs)
model.default_cfg = _cfg()
return model
@register_model
def p2t_large(pretrained=False, **kwargs):
model = PyramidPoolingTransformer(
patch_size=4, embed_dims=[64, 128, 320, 640], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4], qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3],
**kwargs)
model.default_cfg = _cfg()
return model
|