File size: 10,181 Bytes
2252f3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
# -*- coding: utf-8 -*-
# Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. (MPG) is
# holder of all proprietary rights on this computer program.
# You can only use this computer program if you have closed
# a license agreement with MPG or you get the right to use the computer
# program from someone who is authorized to grant you that right.
# Any use of the computer program without a valid license is prohibited and
# liable to prosecution.
#
# Copyright©2019 Max-Planck-Gesellschaft zur Förderung
# der Wissenschaften e.V. (MPG). acting on behalf of its Max Planck Institute
# for Intelligent Systems. All rights reserved.
#
# Contact: ps-license@tuebingen.mpg.de
import os
import cv2
import time
import json
import torch
import subprocess
import numpy as np
import os.path as osp
# from pytube import YouTube
from collections import OrderedDict
from utils.smooth_bbox import get_smooth_bbox_params, get_all_bbox_params
from datasets.data_utils.img_utils import get_single_image_crop_demo
from utils.geometry import rotation_matrix_to_angle_axis
def preprocess_video(video, joints2d, bboxes, frames, scale=1.0, crop_size=224):
"""
Read video, do normalize and crop it according to the bounding box.
If there are bounding box annotations, use them to crop the image.
If no bounding box is specified but openpose detections are available, use them to get the bounding box.
:param video (ndarray): input video
:param joints2d (ndarray, NxJx3): openpose detections
:param bboxes (ndarray, Nx5): bbox detections
:param scale (float): bbox crop scaling factor
:param crop_size (int): crop width and height
:return: cropped video, cropped and normalized video, modified bboxes, modified joints2d
"""
if joints2d is not None:
bboxes, time_pt1, time_pt2 = get_all_bbox_params(joints2d, vis_thresh=0.3)
bboxes[:, 2:] = 150. / bboxes[:, 2:]
bboxes = np.stack([bboxes[:, 0], bboxes[:, 1], bboxes[:, 2], bboxes[:, 2]]).T
video = video[time_pt1:time_pt2]
joints2d = joints2d[time_pt1:time_pt2]
frames = frames[time_pt1:time_pt2]
shape = video.shape
temp_video = np.zeros((shape[0], crop_size, crop_size, shape[-1]))
norm_video = torch.zeros(shape[0], shape[-1], crop_size, crop_size)
for idx in range(video.shape[0]):
img = video[idx]
bbox = bboxes[idx]
j2d = joints2d[idx] if joints2d is not None else None
norm_img, raw_img, kp_2d = get_single_image_crop_demo(
img, bbox, kp_2d=j2d, scale=scale, crop_size=crop_size
)
if joints2d is not None:
joints2d[idx] = kp_2d
temp_video[idx] = raw_img
norm_video[idx] = norm_img
temp_video = temp_video.astype(np.uint8)
return temp_video, norm_video, bboxes, joints2d, frames
def download_youtube_clip(url, download_folder):
return YouTube(url).streams.first().download(output_path=download_folder)
def smplify_runner(
pred_rotmat,
pred_betas,
pred_cam,
j2d,
device,
batch_size,
lr=1.0,
opt_steps=1,
use_lbfgs=True,
pose2aa=True
):
smplify = TemporalSMPLify(
step_size=lr,
batch_size=batch_size,
num_iters=opt_steps,
focal_length=5000.,
use_lbfgs=use_lbfgs,
device=device,
# max_iter=10,
)
# Convert predicted rotation matrices to axis-angle
if pose2aa:
pred_pose = rotation_matrix_to_angle_axis(pred_rotmat.detach()).reshape(batch_size, -1)
else:
pred_pose = pred_rotmat
# Calculate camera parameters for smplify
pred_cam_t = torch.stack(
[pred_cam[:, 1], pred_cam[:, 2], 2 * 5000 / (224 * pred_cam[:, 0] + 1e-9)], dim=-1
)
gt_keypoints_2d_orig = j2d
# Before running compute reprojection error of the network
opt_joint_loss = smplify.get_fitting_loss(
pred_pose.detach(), pred_betas.detach(), pred_cam_t.detach(),
0.5 * 224 * torch.ones(batch_size, 2, device=device), gt_keypoints_2d_orig
).mean(dim=-1)
best_prediction_id = torch.argmin(opt_joint_loss).item()
pred_betas = pred_betas[best_prediction_id].unsqueeze(0)
# pred_betas = pred_betas[best_prediction_id:best_prediction_id+2] # .unsqueeze(0)
# top5_best_idxs = torch.topk(opt_joint_loss, 5, largest=False)[1]
# breakpoint()
start = time.time()
# Run SMPLify optimization initialized from the network prediction
# new_opt_vertices, new_opt_joints, \
# new_opt_pose, new_opt_betas, \
# new_opt_cam_t, \
output, new_opt_joint_loss = smplify(
pred_pose.detach(),
pred_betas.detach(),
pred_cam_t.detach(),
0.5 * 224 * torch.ones(batch_size, 2, device=device),
gt_keypoints_2d_orig,
)
new_opt_joint_loss = new_opt_joint_loss.mean(dim=-1)
# smplify_time = time.time() - start
# print(f'Smplify time: {smplify_time}')
# Will update the dictionary for the examples where the new loss is less than the current one
update = (new_opt_joint_loss < opt_joint_loss)
new_opt_vertices = output['verts']
new_opt_cam_t = output['theta'][:, :3]
new_opt_pose = output['theta'][:, 3:75]
new_opt_betas = output['theta'][:, 75:]
new_opt_joints3d = output['kp_3d']
return_val = [
update,
new_opt_vertices.cpu(),
new_opt_cam_t.cpu(),
new_opt_pose.cpu(),
new_opt_betas.cpu(),
new_opt_joints3d.cpu(),
new_opt_joint_loss,
opt_joint_loss,
]
return return_val
def trim_videos(filename, start_time, end_time, output_filename):
command = [
'ffmpeg', '-i',
'"%s"' % filename, '-ss',
str(start_time), '-t',
str(end_time - start_time), '-c:v', 'libx264', '-c:a', 'copy', '-threads', '1', '-loglevel',
'panic',
'"%s"' % output_filename
]
# command = ' '.join(command)
subprocess.call(command)
def video_to_images(vid_file, img_folder=None, return_info=False):
if img_folder is None:
img_folder = osp.join(osp.expanduser('~'), 'tmp', osp.basename(vid_file).replace('.', '_'))
# img_folder = osp.join('/tmp', osp.basename(vid_file).replace('.', '_'))
print(img_folder)
os.makedirs(img_folder, exist_ok=True)
command = ['ffmpeg', '-i', vid_file, '-f', 'image2', '-v', 'error', f'{img_folder}/%06d.png']
print(f'Running \"{" ".join(command)}\"')
try:
subprocess.call(command)
except:
subprocess.call(f'{" ".join(command)}', shell=True)
print(f'Images saved to \"{img_folder}\"')
img_shape = cv2.imread(osp.join(img_folder, '000001.png')).shape
if return_info:
return img_folder, len(os.listdir(img_folder)), img_shape
else:
return img_folder
def download_url(url, outdir):
print(f'Downloading files from {url}')
cmd = ['wget', '-c', url, '-P', outdir]
subprocess.call(cmd)
def download_ckpt(outdir='data/vibe_data', use_3dpw=False):
os.makedirs(outdir, exist_ok=True)
if use_3dpw:
ckpt_file = 'data/vibe_data/vibe_model_w_3dpw.pth.tar'
url = 'https://www.dropbox.com/s/41ozgqorcp095ja/vibe_model_w_3dpw.pth.tar'
if not os.path.isfile(ckpt_file):
download_url(url=url, outdir=outdir)
else:
ckpt_file = 'data/vibe_data/vibe_model_wo_3dpw.pth.tar'
url = 'https://www.dropbox.com/s/amj2p8bmf6g56k6/vibe_model_wo_3dpw.pth.tar'
if not os.path.isfile(ckpt_file):
download_url(url=url, outdir=outdir)
return ckpt_file
def images_to_video(img_folder, output_vid_file):
os.makedirs(img_folder, exist_ok=True)
command = [
'ffmpeg',
'-y',
'-threads',
'16',
'-i',
f'{img_folder}/%06d.png',
'-profile:v',
'baseline',
'-level',
'3.0',
'-c:v',
'libx264',
'-pix_fmt',
'yuv420p',
'-an',
'-v',
'error',
output_vid_file,
]
print(f'Running \"{" ".join(command)}\"')
try:
subprocess.call(command)
except:
subprocess.call(f'{" ".join(command)}', shell=True)
def convert_crop_cam_to_orig_img(cam, bbox, img_width, img_height):
'''
Convert predicted camera from cropped image coordinates
to original image coordinates
:param cam (ndarray, shape=(3,)): weak perspective camera in cropped img coordinates
:param bbox (ndarray, shape=(4,)): bbox coordinates (c_x, c_y, h)
:param img_width (int): original image width
:param img_height (int): original image height
:return:
'''
cx, cy, h = bbox[:, 0], bbox[:, 1], bbox[:, 2]
hw, hh = img_width / 2., img_height / 2.
sx = cam[:, 0] * (1. / (img_width / h))
sy = cam[:, 0] * (1. / (img_height / h))
tx = ((cx - hw) / hw / sx) + cam[:, 1]
ty = ((cy - hh) / hh / sy) + cam[:, 2]
orig_cam = np.stack([sx, sy, tx, ty]).T
return orig_cam
def prepare_rendering_results(results_dict, nframes):
frame_results = [{} for _ in range(nframes)]
for person_id, person_data in results_dict.items():
for idx, frame_id in enumerate(person_data['frame_ids']):
frame_results[frame_id][person_id] = {
'verts':
person_data['verts'][idx],
'smplx_verts':
person_data['smplx_verts'][idx] if 'smplx_verts' in person_data else None,
'cam':
person_data['orig_cam'][idx],
'cam_t':
person_data['orig_cam_t'][idx] if 'orig_cam_t' in person_data else None,
# 'cam': person_data['pred_cam'][idx],
}
# naive depth ordering based on the scale of the weak perspective camera
for frame_id, frame_data in enumerate(frame_results):
# sort based on y-scale of the cam in original image coords
sort_idx = np.argsort([v['cam'][1] for k, v in frame_data.items()])
frame_results[frame_id] = OrderedDict(
{list(frame_data.keys())[i]: frame_data[list(frame_data.keys())[i]]
for i in sort_idx}
)
return frame_results
|